Electronic properties and materials articles within Nature Communications

Featured

  • Article
    | Open Access

    Electronic bandwidth modulation by static pressure has been explored in several material families. Wang et al. use temperature-dependent Raman spectroscopy and density functional theory to reveal phonon-driven modulation of electronic pseudogap and density wave fluctuations in a ruthenate Ca3Ru2O7.

    • Huaiyu (Hugo) Wang
    • , Yihuang Xiong
    •  & Venkatraman Gopalan
  • Article
    | Open Access

    Recent work has reported puzzling results on the surface of 1T-TaS2. Based on first-principles calculations, the authors show that charge density wave order undergoes surface reconstruction, leading to modifications in the surface electronic structure, which can explain recent experiments.

    • Sung-Hoon Lee
    •  & Doohee Cho
  • Article
    | Open Access

    Optical properties of organic semiconductors enable various optoelectronic applications. Müller et al. report a large exciton bandwidth in a crystalline organic material and attribute it to the strong Coulomb interaction in directed exciton pathways induced by the donor–acceptor type molecular structure.

    • Kai Müller
    • , Karl S. Schellhammer
    •  & Frank Ortmann
  • Article
    | Open Access

    Here, the authors theoretically predict the formation of synergistic correlated and topological states in Coulomb-coupled and gate-tunable graphene/insulator heterostructures, proposing a number of promising substrate candidates and a possible explanation for recent experimental observations in graphene/CrOCl heterostructures.

    • Xin Lu
    • , Shihao Zhang
    •  & Jianpeng Liu
  • Article
    | Open Access

    Recent experiments reported charge order with a stripe pattern in parent compounds of infinite-layer nickelate superconductors. Chen et al. use first principles and effective model calculations to propose an electronic, charge-transfer-driven mechanism of the charge order.

    • Hanghui Chen
    • , Yi-feng Yang
    •  & Hongquan Liu
  • Article
    | Open Access

    Over the last few years, several van der Waals materials have been found that retain magnetic ordering down to monolayer thickness. These materials provide a simple platform for studying the magnetism in reduced dimensions. Here, Zhong et al study the thickness dependence of magnetic ordering in Cr2Te3, and find a crossover from Stoner to Heisenberg-type magnetism as thicknesses are reduced.

    • Yong Zhong
    • , Cheng Peng
    •  & Zhi-Xun Shen
  • Article
    | Open Access

    A hidden effect can occur in materials where locally a symmetry is broken, even though global symmetry is preserved. An example is hidden spin-polarization, arising from local inversion symmetry breaking in otherwise globally centro-symmetric materials. Here, Yuan et al uncover a hidden spin-polarization that can occur in antiferromagnets without spin-orbit coupling and identify the key material requirements for this to occur.

    • Lin-Ding Yuan
    • , Xiuwen Zhang
    •  & Alex Zunger
  • Article
    | Open Access

    Dressing is a concept used to describe moderately interacting electrons. Here authors present the notion of dressed spin-orbit 3/2 moments and how this picture breaks down with increasing electronic interactions across group-5 lacunar spinel magnets.

    • Thorben Petersen
    • , Pritam Bhattacharyya
    •  & Liviu Hozoi
  • Article
    | Open Access

    Many proposed spintronic devices, where spin, rather than charge is used for information processing, rely on the combination of multiple materials, for example, heavy metals and magnetic materials in spin-orbit torque devices. Here, Gao et al. show how the interface between a ferromagnet and a semimetal, Ni81Fe19/Bi0.1Sb0.9, can result in a barrier-mediated spin-orbit torques

    • Tenghua Gao
    • , Alireza Qaiumzadeh
    •  & Kazuya Ando
  • Article
    | Open Access

    Soliton molecules have been observed only in the temporal dimension for classical wave optical systems. Here, the authors use scanning tunneling spectroscopy to identify a topological soliton molecule in real space in a quasi-1D charge-ordered phase of indium atomic wires.

    • Taehwan Im
    • , Sun Kyu Song
    •  & Han Woong Yeom
  • Article
    | Open Access

    In this work, authors report a transparent dynamic infrared emissivity modulation mechanism based on reversible injection/extraction of electrons in aluminium-doped zinc oxide nanocrystals and demonstrate it for smart thermal management applications.

    • Yan Jia
    • , Dongqing Liu
    •  & Tianwen Liu
  • Article
    | Open Access

    Molecular ferroelectrics contain stimuli-responsive structure and ionic building blocks, promising for ionically tailored multifunctionality. Here, the authors report molecular ionic ferroelectrics exhibiting the coexistence of room-temperature ionic conductivity and ferroelectricity.

    • Yulong Huang
    • , Jennifer L. Gottfried
    •  & Shenqiang Ren
  • Article
    | Open Access

    Twisted bilayer graphene hosts a sequence of electronic resets evidenced experimentally by characteristic spectroscopic cascades and sawtooth peaks in the inverse electronic compressibility. Here, the authors use combined dynamical mean-field theory and Hartree calculations to demonstrate that symmetry-breaking transitions are not necessary to observe cascades in twisted bilayer graphene.

    • Anushree Datta
    • , M. J. Calderón
    •  & E. Bascones
  • Article
    | Open Access

    Machine learning methods in condensed matter physics are an emerging tool for providing powerful analytical methods. Here, the authors demonstrate that convolutional neural networks can identify nematic electronic order from STM data of twisted double-layer graphene—even in the presence of heterostrain.

    • João Augusto Sobral
    • , Stefan Obernauer
    •  & Mathias S. Scheurer
  • Article
    | Open Access

    Transition metal monochalcogenides have been predicted to host interesting superconducting and topological properties, but their synthesis remains challenging. Here, the authors report a self-intercalation method driven by ionic liquid gating to obtain PdTe and NiTe single crystals from PdTe2 and NiTe2, respectively.

    • Fei Wang
    • , Yang Zhang
    •  & Shuyun Zhou
  • Article
    | Open Access

    Weak topological insulators offer promising topological state tunability for devices. Here, the authors use ARPES and first-principles calculations to evidence signatures of layer-selective quantum spin Hall channels that may be tunable with chemical potential for future applications.

    • Jingyuan Zhong
    • , Ming Yang
    •  & Yi Du
  • Article
    | Open Access

    Angular-resolved photoemission data is commonly used to determine the 3D electronic structure assuming free-electron final states. Strocov et al. show that even at high excitation energies the complexity of final states in various materials can go far beyond the free-electron picture.

    • V. N. Strocov
    • , L. L. Lev
    •  & J. Minár
  • Article
    | Open Access

    Tunability of the electronic properties of magnetic topological insulators is highly desired for future device applications. Here, the authors study the effect of substitutional impurities on the topological properties of Sb-doped MnBi2Te4 devices and uncover tunable layer-dependent electronic states.

    • Su Kong Chong
    • , Chao Lei
    •  & Kang L. Wang
  • Article
    | Open Access

    Solid helium is predicted to become a metal at extraordinarily high pressures of 25 TPa. Here, the authors predict that helium becomes an excitonic insulator just below the metallization pressure, and a superconductor just above the metallization pressure.

    • Cong Liu
    • , Ion Errea
    •  & Claudio Cazorla
  • Article
    | Open Access

    Hidden local order in disordered crystals is shown to have a strong impact on electronic and phononic band structures. Local correlations within hidden-order states can open band gaps, thereby changing properties without long-range symmetry breaking.

    • Nikolaj Roth
    •  & Andrew L. Goodwin
  • Article
    | Open Access

    Three-dimensional conductive hydrogels have promise in bioelectronics, yet achieving the desired conductivity and mechanical properties in 3D structured hydrogels is challenging. Here, the authors report a liquid-in-liquid 3D printing process for preparation of desirable PEDOT:PSS hydrogels.

    • Xinjian Xie
    • , Zhonggang Xu
    •  & Wenqian Feng
  • Article
    | Open Access

    Topological structures could spark promising functionalities in next generation nanoelectronics. Here, the authors report the realization of complex topological polar textures in epitaxial multiferroic BiFeO3 –SrTiO3 superlattices induced by competing electrical and mechanical boundary conditions.

    • Vivasha Govinden
    • , Peiran Tong
    •  & Daniel Sando
  • Article
    | Open Access

    The reliable fabrication of 2D heterostructures with controllable moiré patterns is important for the investigation of their emergent physical properties. Here, the authors report an alignment technique enabling the fabrication of double-aligned hBN/graphene/hBN supermoiré lattice structures with a yield close to 100%.

    • Junxiong Hu
    • , Junyou Tan
    •  & A. Ariando
  • Article
    | Open Access

    Negative longitudinal magnetoresistance refers to a decrease in resistance with the external magnetic field when the field direction is applied parallel to the current direction. It is considered an experimental signature of topological semimetals. Here, Zhang et al find clear and robust quadratic and linear negative longitudinal magnetoresistance in Pt3Sn and Pt3SnxFe1-x films.

    • Delin Zhang
    • , Wei Jiang
    •  & Jian-Ping Wang
  • Article
    | Open Access

    The Kondo hybridization typically occurs in heavy-fermion systems containing f electrons, although recently it has been reported in d-electron systems. Kim et al. report spectroscopic evidence of the Kondo hybridization in FeTe and discuss it role in the mechanism of the magnetic order.

    • Younsik Kim
    • , Min-Seok Kim
    •  & Changyoung Kim
  • Article
    | Open Access

    Hyperbolic phonon polaritons (HPhPs) in anisotropic van der Waals materials hold promise for nanophotonic applications, but their far-field characterization remains challenging. Here, the authors demonstrate the application of Raman spectroscopy in a backscattering configuration to determine the dispersion of HPhPs in thin GaSe crystals.

    • Alaric Bergeron
    • , Clément Gradziel
    •  & Sébastien Francoeur
  • Article
    | Open Access

    Designing efficient multistate resistive switching devices is promising for neuromorphic computing. Here, the authors demonstrate a reversible hydrogenation in WO3 thin films at room temperature with an electrically-biased scanning probe. The associated insulator to metal transition offers the opportunity to precisely control multistate conductivity at nanoscale.

    • Fan Zhang
    • , Yang Zhang
    •  & Pu Yu
  • Article
    | Open Access

    Metallic resistance of two-dimensional electron gases normally increases with temperature increasing. Here, the authors find a resistance decrease with increasing temperature at very low temperatures in two-dimensional electron metal described by Fermi liquid theory.

    • Sujatha Vijayakrishnan
    • , F. Poitevin
    •  & G. Gervais
  • Article
    | Open Access

    Graphene has many intriguing electronic properties. One of note is the absence of backscattering of electrons confined to a single valley. Spin-orbit interactions can allow backscattering, and here, Sun et al. use this spin-orbit coupling dependence of backscattering to measure the strength of the spin-orbit interaction in a graphene/tungsten selenide heterostructure.

    • Lihuan Sun
    • , Louk Rademaker
    •  & Christoph Renner
  • Article
    | Open Access

    A triangular-lattice organic conductor κ-(BEDT-TTF)4Hg2.89 Br8 is a promising doped spin liquid candidate which also exhibits superconductivity. Here the authors report thermoelectric measurements under pressure and find a quantum critical phase that could be correlated to BEC-like superconductivity.

    • K. Wakamatsu
    • , Y. Suzuki
    •  & K. Kanoda
  • Article
    | Open Access

    Using scanning tunnelling microscopy (STM) and spectroscopy, the authors show the visualization and manipulation of single polarons in monolayer CoCl2. Polarons can be created, moved, erased, and interconverted individually by the STM tip.

    • Min Cai
    • , Mao-Peng Miao
    •  & Ying-Shuang Fu
  • Article
    | Open Access

    Kramers nodal lines are doubly degenerate nodal lines connecting time-reversal invariant momenta, which are predicted to exist in achiral, non-centrosymmetric crystals with spin-orbit interactions. Here, the authors use ARPES and DFT to demonstrate signatures of Kramers nodal lines in a non-centrosymmetric charge density wave-hosting crystal.

    • Shuvam Sarkar
    • , Joydipto Bhattacharya
    •  & Sudipta Roy Barman
  • Article
    | Open Access

    Variational approaches combined with machine learning are promising for solving quantum many-body problems, but they often suffer from scaling and optimization issues. Here the authors demonstrate that a stochastic representation of wavefunctions enables reducing the ground state search to standard regression.

    • Hristiana Atanasova
    • , Liam Bernheimer
    •  & Guy Cohen
  • Article
    | Open Access

    Hund’s coupling, or the intra-atomic exchange, can drive novel quantum phases in multi-orbital systems, but this requires precise control of orbital occupancy. Ko et al. report an orbital-selective metal-to-insulator transition driven by Hund´s physics via symmetry-preserving strain tuning in monolayer SrRuO3.

    • Eun Kyo Ko
    • , Sungsoo Hahn
    •  & Tae Won Noh
  • Article
    | Open Access

    Twisted moiré heterostructures offer a highly tunable solid-state platform for exploring fundamental condensed matter physics. Here, the authors use scanning tunnelling microscopy to investigate the local electronic structure of the gate-controlled quantum anomalous Hall insulator state in twisted monolayer–bilayer graphene.

    • Canxun Zhang
    • , Tiancong Zhu
    •  & Michael F. Crommie