Articles in 2023

Filter By:

  • Radionuclides have a myriad of applications, ranging from nuclear energy to environmental studies. Carine Michotte illustrates the importance of radionuclide metrology for nuclear medicine.

    • Carine Michotte
    Measure for Measure
  • The common practice of naming equations, effects, constants and units after individual scientists has its downsides, and it’s time to rethink it.

    Editorial
  • A milestone for the coherence time of a macroscopic mechanical oscillator may be a crucial advance for enabling the development of quantum technologies based on optomechanical architectures and for fundamental tests of quantum mechanics.

    • A. Metelmann
    News & Views
  • Drops sitting on an array of parallel fibres spontaneously move along the fibres when subject to an airflow perpendicular to the array. The drops show long-range aerodynamic interactions with their downstream and upstream neighbours, and these can catalyse drop coalescence and removal of drops from the fibres — relevant for applications such as fog harvesting and filtration.

    Research Briefing
  • A new binding mechanism between trapped laser-cooled ions and atoms has been observed. This advancement offers a novel control knob over chemical reactions and inelastic processes on the single particle limit.

    • Pascal Weckesser
    News & Views
  • Achieving low decoherence is challenging in hybrid quantum systems. A superconducting-circuit-based optomechanical platform realizes millisecond-scale quantum state lifetime, which allows tracking of the free evolution of a squeezed mechanical state.

    • Amir Youssefi
    • Shingo Kono
    • Tobias J. Kippenberg
    Article
  • The wetting behaviour of drops attached to fibres is exploited in many applications including fog harvesting. The presence of a background air flow on fibre-attached drops on parallel fibres is now shown to lead to alignment, repulsion and coalescence processes.

    • Jessica L. Wilson
    • Amir A. Pahlavan
    • Howard A. Stone
    Article
  • The formation of molecules in binary particle collisions is forbidden in free space, but the presence of an external trapping potential now enables the realization of bound states in ultracold atom–ion collisions.

    • Meirav Pinkas
    • Or Katz
    • Roee Ozeri
    Article
  • The near-zero thermal expansion of Invar alloy Fe65Ni35 is technologically important but still unexplained. Measurements show that this phenomenon can be explained by the cancellation of magnetic and phonon contributions to the alloy’s entropy.

    • Ralf Röhlsberger
    News & Views
  • Generating high harmonics or attosecond pulses of light is normally thought of as a classical process, but a theoretical study has now shown how the process could be driven by quantum light.

    • Dong Hyuk Ko
    • P. B. Corkum
    News & Views
  • High-harmonic generation is a source of high-frequency radiation and is typically driven by strong, but classical, laser fields. A theoretical study now shows that using quantum light states as the driver extends the spectrum of outgoing radiation in a controllable manner.

    • Alexey Gorlach
    • Matan Even Tzur
    • Ido Kaminer
    Article
  • Being able to perform qubit measurements within a quantum circuit and adapt to their outcome broadens the power of quantum computers. These mid-circuit measurements have now been used to implement a cryptographic proof of non-classical behaviour.

    • Daiwei Zhu
    • Gregory D. Kahanamoku-Meyer
    • Christopher Monroe
    Article
  • Measuring the transmission matrix of disordered structures has so far been limited to the domain of linear systems. Now it has been measured for nonlinear disorder, with exciting implications for information capacity.

    • Sushil Mujumdar
    News & Views
  • Regenerative animals accurately regrow lost appendages. Now, research suggests that mechanical waves propagating from the amputation edge have a key role in this process.

    • Yutaka Matsubayashi
    News & Views