Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose–Einstein condensate

A Publisher Correction to this article was published on 14 August 2023

This article has been updated

Abstract

Quantum entanglement can provide enhanced measurement precision beyond the standard quantum limit, the highest precision achievable with classical means. However, observations with a large enhancement remain challenging due to experimental limitations in the preparation, control and detection of entanglement. Here we report a nonlinear interferometry protocol with echoed spin-nematic squeezing in a spinor atomic Bose–Einstein condensate. We generate spin-nematic squeezed states through spin-mixing dynamics, an atomic analogue of optical four-wave mixing. The squeezed states are refocused back to the vicinity of the classical initial state by a state-flip operation that resembles spin-echo techniques, which leads to encoded phases preferentially amplified over noise. Using a large ensemble of 26,400 atoms, we observe a sensitivity of 15.6 ± 0.5 dB beyond the standard quantum limit for detecting small-angle Rabi rotation, as well as 16.6 ± 1.1 dB for phase sensing in a Ramsey-like interferometry application. Our results highlight the many-body coherence of spin-nematic squeezed states and point to their possible quantum metrological application in atomic magnetometers, atomic clocks and fundamental tests of Lorentz symmetry violations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin-nematic squeezing and its echoed dynamics.
Fig. 2: ESNI for sensing a small-angle Rabi rotation.
Fig. 3: Nonlinear Ramsey-like interferometry for quadrature phase sensing.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes are available from the corresponding authors upon reasonable request.

Change history

References

  1. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Google Scholar 

  3. Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009).

    ADS  MathSciNet  Google Scholar 

  4. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS  MathSciNet  Google Scholar 

  5. Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613 (2013).

    ADS  Google Scholar 

  6. Taylor, M. A. & Bowen, W. P. Quantum metrology and its application in biology. Phys. Rep. 615, 1–59 (2016).

    ADS  MathSciNet  Google Scholar 

  7. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  Google Scholar 

  8. Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).

    ADS  Google Scholar 

  9. Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    ADS  Google Scholar 

  10. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    ADS  MATH  Google Scholar 

  11. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    ADS  Google Scholar 

  12. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    ADS  Google Scholar 

  13. Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    Google Scholar 

  14. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014).

    ADS  Google Scholar 

  15. Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

    ADS  Google Scholar 

  16. Luo, X.-Y. et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 620–623 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  17. Zou, Y.-Q. et al. Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms. Proc. Natl Acad. Sci. USA 115, 6381–6385 (2018).

    ADS  Google Scholar 

  18. Macrì, T., Smerzi, A. & Pezzè, L. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102 (2016).

    ADS  Google Scholar 

  19. Gabbrielli, M., Pezzè, L. & Smerzi, A. Spin-mixing interferometry with Bose–Einstein condensates. Phys. Rev. Lett. 115, 163002 (2015).

    ADS  Google Scholar 

  20. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    ADS  Google Scholar 

  21. Fröwis, F., Sekatski, P. & Dür, W. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016).

    ADS  MathSciNet  Google Scholar 

  22. Szigeti, S. S., Lewis-Swan, R. J. & Haine, S. A. Pumped-up SU(1,1) interferometry. Phys. Rev. Lett. 118, 150401 (2017).

    ADS  Google Scholar 

  23. Nolan, S. P., Szigeti, S. S. & Haine, S. A. Optimal and robust quantum metrology using interaction-based readouts. Phys. Rev. Lett. 119, 193601 (2017).

    ADS  Google Scholar 

  24. Anders, F., Pezzè, L., Smerzi, A. & Klempt, C. Phase magnification by two-axis countertwisting for detection-noise robust interferometry. Phys. Rev. A 97, 043813 (2018).

    ADS  Google Scholar 

  25. Mirkhalaf, S. S., Nolan, S. P. & Haine, S. A. Robustifying twist-and-turn entanglement with interaction-based readout. Phys. Rev. A 97, 053618 (2018).

    ADS  Google Scholar 

  26. Haine, S. A. Using interaction-based readouts to approach the ultimate limit of detection-noise robustness for quantum-enhanced metrology in collective spin systems. Phys. Rev. A 98, 030303 (2018).

    ADS  Google Scholar 

  27. Huang, J., Zhuang, M., Lu, B., Ke, Y. & Lee, C. Achieving Heisenberg-limited metrology with spin cat states via interaction-based readout. Phys. Rev. A 98, 012129 (2018).

    ADS  Google Scholar 

  28. Burd, S. C. et al. Quantum amplification of mechanical oscillator motion. Science 364, 1163–1165 (2019).

    ADS  Google Scholar 

  29. Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).

    Google Scholar 

  30. Hosten, O., Krishnakumar, R., Engelsen, N. J. & Kasevich, M. A. Quantum phase magnification. Science 352, 1552–1555 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    ADS  Google Scholar 

  32. Liu, Q. et al. Nonlinear interferometry beyond classical limit enabled by cyclic dynamics. Nat. Phys. 18, 167–171 (2022).

    ADS  Google Scholar 

  33. Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose–Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998).

    ADS  Google Scholar 

  34. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    ADS  MATH  Google Scholar 

  35. Yi, S., Müstecaplıoğlu, O. E., Sun, C. P. & You, L. Single-mode approximation in a spinor-1 atomic condensate. Phys. Rev. A 66, 011601 (2002).

    ADS  Google Scholar 

  36. Gerbier, F., Widera, A., Fölling, S., Mandel, O. & Bloch, I. Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A 73, 041602 (2006).

    ADS  Google Scholar 

  37. Jiang, J., Zhao, L., Webb, M. & Liu, Y. Mapping the phase diagram of spinor condensates via adiabatic quantum phase transitions. Phys. Rev. A 90, 023610 (2014).

    ADS  Google Scholar 

  38. Müstecaplıoğlu, O. E., Zhang, M. & You, L. Spin squeezing and entanglement in spinor condensates. Phys. Rev. A 66, 033611 (2002).

    ADS  Google Scholar 

  39. Zhang, W., Zhou, D. L., Chang, M. S., Chapman, M. S. & You, L. Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A 72, 013602 (2005).

    ADS  Google Scholar 

  40. Duan, L. M., Cirac, J. I. & Zoller, P. Quantum entanglement in spinor Bose–Einstein condensates. Phys. Rev. A 65, 033619 (2002).

    ADS  Google Scholar 

  41. Lipkin, H. J., Meshkov, N. & Glick, A. J. Validity of many-body approximation methods for a solvable model: (i). exact solutions and perturbation theory. Nucl. Phys. 62, 188–198 (1965).

    MathSciNet  Google Scholar 

  42. Meshkov, N., Glick, A. J. & Lipkin, H. J. Validity of many-body approximation methods for a solvable model: (ii). linearization procedures. Nucl. Phys. 62, 199–210 (1965).

    MathSciNet  Google Scholar 

  43. Glick, A. J., Lipkin, H. J. & Meshkov, N. Validity of many-body approximation methods for a solvable model: (iii). diagram summations. Nucl. Phys. 62, 211–224 (1965).

    MathSciNet  Google Scholar 

  44. Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J. & Gardiner, C. W. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008).

    ADS  Google Scholar 

  45. Niezgoda, A., Kajtoch, D., Dziekańska, J. & Witkowska, E. Optimal quantum interferometry robust to detection noise using spin-1 atomic condensates. New J. Phys. 21, 093037 (2019).

    ADS  Google Scholar 

  46. Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A. 33, 4033 (1986).

    ADS  Google Scholar 

  47. Ockeloen, C. F., Schmied, R., Riedel, M. F. & Treutlein, P. Quantum metrology with a scanning probe atom interferometer. Phys. Rev. Lett. 111, 143001 (2013).

    ADS  Google Scholar 

  48. Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose–Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    ADS  Google Scholar 

  49. Kruse, I. et al. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett. 117, 143004 (2016).

    ADS  Google Scholar 

  50. Li, L., Li, X., Zhang, B. & You, L. Enhancing test precision for local Lorentz-symmetry violation with entanglement. Phys. Rev. A 99, 042118 (2019).

    ADS  Google Scholar 

  51. Zhuang, M., Huang, J. & Lee, C. Entanglement-enhanced test proposal for local Lorentz-symmetry violation via spinor atoms. Quantum 6, 859 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank L. N. Wu, Y. Q. Zou, X. Y. Luo, J. L. Yu, M. Xue and S. F. Guo for helpful discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11654001, U1930201 and 92265205), the Natural Science Foundation of Zhejiang Province (Grant No. LY22A050002), the Key Area Research and Development Program of GuangDong Province (Grant No. 2019B030330001), the National Key R&D Program of China (Grant Nos. 2018YFA0306504 and 2018YFA0306503) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302100).

Author information

Authors and Affiliations

Authors

Contributions

Y.-X.H., Q.L. and L.Y. conceived this study. T.-W.M., Q.L., J.-H.C. and W.-X.X. performed the experiments and analysed the data. T.-W.M., Q.L., X.-W.L. and F.C. conducted the numerical simulations. T.-W.M., Q.L., Y.-X.H., M.-K.T. and L.Y. wrote the paper.

Corresponding authors

Correspondence to Qi Liu, Yi-Xiao Huang or Li You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Luca Pezze and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Calibration of spin rotation around the \({\hat{Q}}_{0}\) axis.

Spin rotations are realized by adjusting the relative phase between two consecutive MW π pulses, which are resonantly coupled to the clock transition between \(\left\vert 1,0\right\rangle\) and \(\left\vert 2,0\right\rangle\) hyperfine states. The blue dots are experimental results averaged over 10 repetitions and the uncertainty of one standard deviation is smaller than the dot size. The solid line is a fit using trigonometry function which helps to infer the actually accumulated geometric phase from the MW pulses.

Source data

Extended Data Fig. 2 Calibration of small-angle Rabi rotation around \({\hat{L}}_{x}\) axis.

In the experiment, we fix the RF amplitude (A0) of the first one in the composite pulse, while the amplitude (A) of the second one is changed to tune the net rotation angle. This figure shows the dependence of the accumulated phase angle on the amplitude ratio of A/A0.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Discussion.

Supplementary Data

Experimental data in Supplementary Fig. 8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, TW., Liu, Q., Li, XW. et al. Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose–Einstein condensate. Nat. Phys. 19, 1585–1590 (2023). https://doi.org/10.1038/s41567-023-02168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02168-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing