News & Comment

Filter By:

  • A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.

    • Marnix H Medema
    • Renzo Kottmann
    • Frank Oliver Glöckner
    CommentaryOpen Access
  • We asked a collection of chemical biologists: “What is the most significant challenge facing chemical biology as a discipline?”

    Q&A
  • Chemical probes are proven tools for biological research and early-stage drug development, but how can chemical biologists make them more useful to the broader scientific community?

    Editorial
  • Epigenetic chemical probes are having a strong impact in biological discovery and target validation. Systematic coverage of emerging epigenetic target classes with these potent, selective, cell-active chemical tools will profoundly influence understanding of the human biology and pathology of chromatin-templated mechanisms.

    • Andrea Huston
    • Cheryl H Arrowsmith
    • Matthieu Schapira
    Commentary
  • Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.

    • Cheryl H Arrowsmith
    • James E Audia
    • William J Zuercher
    Commentary
    • Terry L. Sheppard
    Research Highlights
  • We asked a collection of chemical biologists: “What would you say have been the most important historical contributions of chemical biology to broader areas of science”?

    Q&A
  • Recent studies suggest that iron-sulfur (Fe-S) proteins may be unexpectedly abundant and functionally diverse in mammalian cells, but their identification still remains difficult. The use of informatics along with traditional spectroscopic analyses could be key to discovering new Fe-S proteins and validating their functional roles.

    • Tracey A Rouault
    Commentary