Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Probing the epigenome

Epigenetic chemical probes are having a strong impact in biological discovery and target validation. Systematic coverage of emerging epigenetic target classes with these potent, selective, cell-active chemical tools will profoundly influence understanding of the human biology and pathology of chromatin-templated mechanisms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leveling the landscape of epigenetics research (a,b).
Figure 2: Epigenetic chemical probes are extensively used.
Figure 3: Chemical biology tools for epigenetic drug discovery.

References

  1. Edwards, A.M. et al. Nature 470, 163–165 (2011).

    Article  CAS  Google Scholar 

  2. Fedorov, O., Muller, S. & Knapp, S. Nat. Chem. Biol. 6, 166–169 (2010).

    Article  CAS  Google Scholar 

  3. Bunnage, M.E., Chekler, E.L. & Jones, L.H. Nat. Chem. Biol. 9, 195–199 (2013).

    Article  CAS  Google Scholar 

  4. Arrowsmith, C.H., Bountra, C., Fish, P.V., Lee, K. & Schapira, M. Nat. Rev. Drug Discov. 11, 384–400 (2012).

    Article  CAS  Google Scholar 

  5. Welter, D. et al. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  Google Scholar 

  6. Cheung, H.W. et al. Proc. Natl. Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  Google Scholar 

  7. Baldwin, R.M. et al. Oncotarget 6, 3013–3032 (2015).

    Article  Google Scholar 

  8. Yao, R. et al. Cancer Res. 74, 5656–5667 (2014).

    Article  CAS  Google Scholar 

  9. Meyer, T.E. et al. PLoS Genet. 6, e1001045 (2010).

    Article  Google Scholar 

  10. Filippakopoulos, P. et al. Nature 468, 1067–1073 (2010).

    Article  CAS  Google Scholar 

  11. Nicodeme, E. et al. Nature 468, 1119–1123 (2010).

    Article  CAS  Google Scholar 

  12. Filippakopoulos, P. & Knapp, S. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  Google Scholar 

  13. Chan-Penebre, E. et al. Nat. Chem. Biol. 11, 432–437 (2015).

    Article  CAS  Google Scholar 

  14. Copeland, R.A. Clin. Cancer Res. 19, 6344–6350 (2013).

    Article  CAS  Google Scholar 

  15. Bitler, B.G. et al. Nat. Med. 21, 231–238 (2015).

    Article  CAS  Google Scholar 

  16. Mack, S.C. et al. Nature 506, 445–450 (2014).

    Article  CAS  Google Scholar 

  17. Chen, C.W. et al. Nat. Med. 21, 335–343 (2015).

    Article  CAS  Google Scholar 

  18. Stratikopoulos, E.E. et al. Cancer Cell 27, 837–851 (2015).

    Article  CAS  Google Scholar 

  19. Borkin, D. et al. Cancer Cell 27, 589–602 (2015).

    Article  CAS  Google Scholar 

  20. Cao, F. et al. Mol. Cell 53, 247–261 (2014).

    Article  CAS  Google Scholar 

  21. Malik, R. et al. Nat. Med. 21, 344–352 (2015).

    Article  CAS  Google Scholar 

  22. Grebien, F. Nat. Chem. Biol. doi:10.1038/nchembio.1859 (13 July 2015).

    Article  CAS  Google Scholar 

  23. Shi, Y. et al. Cell Stem Cell 3, 568–574 (2008).

    Article  CAS  Google Scholar 

  24. Shi, Y. et al. Cell Stem Cell 2, 525–528 (2008).

    Article  CAS  Google Scholar 

  25. Schones, D.E., Chen, X., Trac, C., Setten, R. & Paddison, P.J. Epigenetics Chromatin 7, 23 (2014).

    Article  Google Scholar 

  26. Yu, H. et al. Cell Death Dis. 4, e506 (2013).

    Article  CAS  Google Scholar 

  27. Gibaja, V. et al. Oncogene doi:10.1038/onc.2015.114 (20 April 2015).

    Article  CAS  Google Scholar 

  28. Frye, S.V. Nat. Chem. Biol. 6, 159–161 (2010).

    Article  CAS  Google Scholar 

  29. James, L.I. et al. Nat. Chem. Biol. 9, 184–191 (2013).

    Article  CAS  Google Scholar 

  30. Xhemalce, B., Robson, S.C. & Kouzarides, T. Cell 151, 278–288 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Knapp or Matthieu Schapira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Tables 1–2 (PDF 1504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huston, A., Arrowsmith, C., Knapp, S. et al. Probing the epigenome. Nat Chem Biol 11, 542–545 (2015). https://doi.org/10.1038/nchembio.1871

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1871

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer