Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 14 Issue 6, June 2022

Kinetic competition in cathode synthesis

Stability issues currently prevent the practical application of nickel-rich layered oxides as cathodes in next-generation lithium batteries. Now, Kang, Park and colleagues have studied the solid-state synthesis of LiNi0.6Co0.2Mn0.2O2 (NCM622) using multiscale in situ techniques and show that kinetic competition between precursor decomposition and lithiation leads to spatially heterogeneous intermediates and the formation of detrimental defects. The image on the cover depicts the heterogeneous intermediates captured during the synthesis of NCM622 from a precursor mixture of transition-metal hydroxides and lithium hydroxides. The lithium atoms are shown as blue spheres, transition-metal atoms (Ni, Co and Mn) as brown spheres, and hydrogen and oxygen atoms are white and red, respectively.

See Park et al.

Image: Younghee Lee / CUBE3D Graphic. Cover design: Tulsi Voralia

Comment

  • In 1931, Erich Hückel published a landmark paper — the seed of the now famous 4n + 2 rule for aromaticity in annulenes that bears his name. Electron counting has since been extended to other classes of compounds, resulting in a multitude of rules aiming to capture the concept of aromaticity and its impact in chemistry.

    • Miquel Solà
    Comment

    Advertisement

Top of page ⤴

Thesis

  • In early 2020, Shira Joudan was in the final stages of her PhD when the COVID-19 pandemic hit. Despite the challenging circumstances, she graduated, found a postdoc position and will begin her independent academic career in early 2023.

    • Shira Joudan
    Thesis
Top of page ⤴

News & Views

  • Being able to run two reactions concurrently enables synthetic methods to be streamlined, but simultaneously controlling the selectivity of both reactions is an enormous challenge. Now, a directing group is used to reinvent a classic tandem reaction, activating specific sp3 C–H bonds with pinpoint accuracy.

    • Sarah E. Jenny
    • Graham E. Dobereiner
    News & Views
  • Trisubstituted macrocyclic alkenes are prominent moieties in natural products, and although ring-closing metathesis reactions can be used to access such targets, the yields are typically suboptimal and the stereochemical outcome is unpredictable. Now, a methodology has been developed that tackles both of these challenges.

    • Damian W. Young
    • Srinivas Chamakuri
    News & Views
  • Explaining the controlled emergence and growth of molecular complexity at life’s origins is one of prebiotic chemistry’s grand challenges. Now, it has been shown that we can observe how the self-organization of a complex carbohydrate network can be modulated by its environment.

    • Quentin Dherbassy
    • Kamila B. Muchowska
    News & Views
Top of page ⤴

Review Articles

  • The emerging field of dissipative DNA nanotechnology aims at developing synthetic devices and nanomaterials with life-like properties such as directional motion, transport, communication or adaptation. This Review surveys how dissipative DNA systems combine the programmability of nucleic-acid reactions with the consumption of energy stored in chemical fuel molecules to perform work and cyclical tasks.

    • Erica Del Grosso
    • Elisa Franco
    • Francesco Ricci
    Review Article
Top of page ⤴

Articles

  • Nickel-rich layered oxides, such as NCM622, are promising cathode materials for lithium batteries, but chemo-mechanical failures hinder their practical application. Now the solid-state synthesis of NCM622 has been studied using multiscale in situ techniques, and kinetic competition between precursor decomposition and lithiation has been observed to lead to spatially heterogeneous intermediates and the formation of defects that are detrimental to cycling.

    • Hyeokjun Park
    • Hayoung Park
    • Kisuk Kang
    Article
  • The process by which life arose using information from the prebiotic environment and inherent molecular reactivity is unclear. Now, it has been shown that systems of chemical reactions exhibit well-defined self-organization in varying environments, providing a potential mechanism for chemical evolution processes that bridge the gap between prebiotic building blocks and life’s origin.

    • William E. Robinson
    • Elena Daines
    • Wilhelm T. S. Huck
    Article
  • The regioselectivity of tandem isomerization/hydrocarbonylation reactions is typically dictated by thermodynamics and there are limitations on the isomerization of internal alkenes. Now, it has been shown that a low-valent-tungsten catalyst controls the isomerization of alkenes to classically challenging unactivated internal positions and, with the aid of a directing group, enables subsequent addition of hydrogen and carbon monoxide.

    • Tanner C. Jankins
    • William C. Bell
    • Keary M. Engle
    Article
  • Many bioactive compounds are trisubstituted macrocyclic alkenes, but use of current methods often results in poor yields and low stereoselectivity. Now, a ring-closing metathesis strategy has been developed that enables these compounds to be prepared efficiently and in either stereoisomeric form: an approach that may prove useful in the late stages of total syntheses, for skeletal editing and in drug discovery.

    • Yucheng Mu
    • Felix W. W. Hartrampf
    • Amir H. Hoveyda
    Article
  • Soft bioelectronic devices have exciting potential applications in robotics, computing and medicine, but they are typically restricted by the requirement for tethers or stiff electrodes. Now, a synthetic nerve has been developed that is bioinspired, wireless and powered by light. By patterning functionalized lipid membrane compartments, information was directionally conveyed using electrochemical signals.

    • Charlotte E. G. Hoskin
    • Vanessa Restrepo Schild
    • Hagan Bayley
    Article
  • The collision dynamics between a pair of aligned molecules in the presence of a scattering resonance provide the most sensitive probe of the long-range anisotropic forces important to chemistry. By simultaneously controlling the collision temperature and geometry between a pair of aligned D2 molecules, we unravel the anisotropic dynamics of a cold scattering process.

    • Haowen Zhou
    • William E. Perreault
    • Richard N. Zare
    Article
  • Molecular energy transfer is thought to follow a simple rule of thumb: high energy transfer requires hard collisions that result in backscattering. However, now it has been observed that an unexpected forward scattering occurs in NO–CO and NO–HD collisions even for high energy transfer. This is attributed to ‘hard-collision glory scattering’, a mechanism that appears to be ubiquitous in molecule–molecule collisions.

    • Matthieu Besemer
    • Guoqiang Tang
    • Tijs Karman
    Article
  • In a similar fashion to its macroscopic counterpart, molecular gearing is a correlated motion of intermeshed molecular fragments against one another. Now it has been shown that photogearing can be used to actively fuel molecular gearing motions with light and concomitantly shift the axis of rotation.

    • Aaron Gerwien
    • Frederik Gnannt
    • Henry Dube
    Article
  • A reduction reaction is usually equated with an electron transfer reaction. Now, ultrafast time-resolved serial femtosecond X-ray crystallography has enabled the visualization of the stepwise structural changes that occur after electron transfers have been observed in the light-triggered reduction of flavin adenine dinucleotide catalysed by DNA photolyase.

    • Manuel Maestre-Reyna
    • Cheng-Han Yang
    • Ming-Daw Tsai
    Article
  • Most chemical glycosylation methods operate by acid-promoted, ionic activation of donors. Now, by exploiting the formation of a halogen-bond complex, the activation of glycosyl donors was achieved via a visible light-promoted radical cascade process, resulting in a general, simple and mild way to build challenging 1,2-cis-glycosidic bonds.

    • Chen Zhang
    • Hao Zuo
    • Dawen Niu
    Article
  • 2D–2D heterostructures are typically held together by van der Waals interactions. Now, an on-device MoS2–graphene heterostructure has been prepared that is covalently linked through a bifunctional molecule featuring a maleimide and a diazonium group. The electronic properties of the resulting heterostructure are shown to be dominated by the molecular interface.

    • Manuel Vázquez Sulleiro
    • Aysegul Develioglu
    • Emilio M. Pérez
    Article
  • Entomopathogenic nematodes carrying Xenorhabdus and Photorhabdus bacteria prey on insect larvae in the soil. Now, a comprehensive analysis of the bacterial genome has revealed ubiquitous and unique families of biosynthetic gene clusters. Evaluation of the bioactivity of the natural products expressed by the most prevalent cluster families explains the functional basis of bacterial natural products involved in bacteria–nematode–insect interactions.

    • Yi-Ming Shi
    • Merle Hirschmann
    • Helge B. Bode
    Article Open Access
Top of page ⤴

Amendments & Corrections

Top of page ⤴

In Your Element

  • The tris(2,2′-bipyridine)ruthenium(II) cation, or ‘rubipy’ to its friends, has had a significant influence on our understanding of the photophysics of transition metal complexes, and has also helped revolutionize organic photochemistry, explains Daniela M. Arias-Rotondo.

    • Daniela M. Arias-Rotondo
    In Your Element
Top of page ⤴

Search

Quick links