Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photogearing as a concept for translation of precise motions at the nanoscale

Abstract

One of the major challenges for harnessing the true potential of functional nano-machinery is integrating and transmitting motion with great precision. Molecular gearing systems enable the integration of multiple motions in a correlated fashion to translate motions from one locality to another and to change their speed and direction. However, currently no powerful methods exist to implement active driving of gearing motions at the molecular scale. Here we present a light-fuelled molecular gearing system and demonstrate its superiority over passive thermally activated gearing. Translation of a 180° rotation into a 120° rotation is achieved while at the same time the direction of the rotation axis is shifted by 120°. Within such photogearing processes, precise motions at the nanoscale can be changed in direction and decelerated in a manner similar to macroscopic bevel-gear operations in an energy consuming way—a necessary prerequisite to employ gearing as an active component in future mechanical nano-systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of established molecular gearing systems and synchronous motion with photogearing.
Fig. 2: HTI-photogear 1 and its thermally activated motions.
Fig. 3: Photogearing in HTI-photogear 1.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the Article and the associated Supplementary Information files; the same data can also be obtained from the corresponding author on reasonable request. The X-ray crystallographic coordinates for the structures 1 (A) and 1 (C) reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under CCDC numbers 2086150 (1 (A)) and 2086149 (1 (C)). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Sauvage, J. P. From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  2. Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  3. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  5. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Harris, J. D., Moran, M. J. & Aprahamian, I. New molecular switch architectures. Proc. Natl Acad. Sci. USA 115, 9414–9422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Michl, J. & Sykes, E. C. H. Molecular rotors and motors: recent advances and future challenges. ACS Nano 3, 1042–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nat. Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  10. Barrell, M. J., Campana, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

    Article  CAS  Google Scholar 

  11. Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koumura, N., Zijlstra, R. W. J., van Delden, R. A. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Greb, L. & Lehn, J. M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Haberhauer, G. A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011).

    Article  CAS  Google Scholar 

  17. Tierney, H. L. et al. Experimental demonstration of a single-molecule electric motor. Nat. Nanotechnol. 6, 625–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Gerwien, A., Mayer, P. & Dube, H. Photon-only molecular motor with reverse temperature-dependent efficiency. J. Am. Chem. Soc. 140, 16442–16445 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Gerwien, A., Mayer, P. & Dube, H. Green light powered molecular state motor enabling eight-shaped unidirectional rotation. Nat. Commun. 10, 4449 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kistemaker, H. A., Stacko, P., Visser, J. & Feringa, B. L. Unidirectional rotary motion in achiral molecular motors. Nat. Chem. 7, 890–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Perera, U. G. E. et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 8, 46–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Article  CAS  Google Scholar 

  30. Goswami, A., Saha, S., Biswas, P. K. & Schmittel, M. (Nano)mechanical motion triggered by metal coordination: from functional devices to networked multicomponent catalytic machinery. Chem. Rev. 120, 125–199 (2020).

  31. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Boelke, J. & Hecht, S. Designing molecular photoswitches for soft materials applications. Adv. Optical Mater. 7, 1900404 (2019).

    Article  CAS  Google Scholar 

  35. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Pizzolato, S. F. et al. Central-to-helical-to-axial-to-central transfer of chirality with a photoresponsive catalyst. J. Am. Chem. Soc. 140, 17278–17289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Štacko, P. et al. Locked synchronous rotor motion in a molecular motor. Science 356, 964–968 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Uhl, E., Thumser, S., Mayer, P. & Dube, H. Transmission of unidirectional molecular motor rotation to a remote biaryl axis. Angew. Chem. Int. Ed. 57, 11064–11068 (2018).

    Article  CAS  Google Scholar 

  40. Uhl, E., Mayer, P. & Dube, H. Active and unidirectional acceleration of biaryl rotation by a molecular motor. Angew. Chem. Int. Ed. 59, 5730–5737 (2020).

    Article  CAS  Google Scholar 

  41. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Gakh, A. A., Sachleben, R. A. & Bryan, J. C. Molecular gearing systems. Chemtech 27, 26–33 (1997).

    CAS  Google Scholar 

  44. Iwamura, H. & Mislow, K. Stereochemical consequences of dynamic gearing. Acc. Chem. Res. 21, 175–182 (1988).

    Article  CAS  Google Scholar 

  45. Liepuoniute, I., Jellen, M. J. & Garcia-Garibay, M. A. Correlated motion and mechanical gearing in amphidynamic crystalline molecular machines. Chem. Sci. 11, 12994–13007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kelly, T. R. et al. A molecular brake. J. Am. Chem. Soc. 116, 3657–3658 (1994).

    Article  CAS  Google Scholar 

  47. Yang, J.-S. et al. A pentiptycene-derived light-driven molecular brake. Org. Lett. 10, 2279–2282 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Perez-Estrada, S., Rodriguez-Molina, B., Maverick, E. F., Khan, S. I. & Garcia-Garibay, M. A. Throwing in a monkey wrench to test and determine geared motion in the dynamics of a crystalline one-dimensional (1D) columnar rotor array. J. Am. Chem. Soc. 141, 2413–2420 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Molina, B. et al. Anisochronous dynamics in a crystalline array of steroidal molecular rotors: evidence of correlated motion within 1D helical domains. J. Am. Chem. Soc. 133, 7280–7283 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Frantz, D. K., Linden, A., Baldridge, K. K. & Siegel, J. S. Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J. Am. Chem. Soc. 134, 1528–1535 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Kawada, Y. & Iwamura, H. Unconventional synthesis and conformational flexibility of bis(1-triptycyl) ether. J. Org. Chem. 45, 2547–2548 (1980).

    Article  CAS  Google Scholar 

  52. Hounshell, W. D., Johnson, C. A., Guenzi, A., Cozzi, F. & Mislow, K. Stereochemical consequences of dynamic gearing in substituted bis(9-triptycyl) methanes and related molecules. Proc. Natl Acad. Sci. USA 77, 6961–6964 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lemouchi, C. et al. Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc. 135, 9366–9376 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Ube, H., Yasuda, Y., Sato, H. & Shionoya, M. Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism. Nat. Commun. 8, 14296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lubbe, A. S., Ruangsupapichat, N., Caroli, G. & Feringa, B. L. Control of rotor function in light-driven molecular motors. J. Org. Chem. 76, 8599–8610 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Ter Wiel, M. K., van Delden, R. A., Meetsma, A. & Feringa, B. L. Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox. Org. Biomol. Chem. 3, 4071–4076 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. Abid, S. et al. Desymmetrised pentaporphyrinic gears mounted on metallo-organic anchors. Chem. Sci. 12, 4709–4721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, H. H., Croy, A., Gutierrez, R., Joachim, C. & Cuniberti, G. Current-induced rotations of molecular gears. J. Phys. Commun. 3, 025011 (2019).

    Article  CAS  Google Scholar 

  59. Wiedbrauk, S. & Dube, H. Hemithioindigo—an emerging photoswitch. Tetrahedron Lett. 56, 4266–4274 (2015).

    Article  CAS  Google Scholar 

  60. Petermayer, C. & Dube, H. Indigoid photoswitches: visible light responsive molecular tools. Acc. Chem. Res. 51, 1153–1163 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Huber, L. A. et al. Direct observation of hemithioindigo-motor unidirectionality. Angew. Chem. Int. Ed. 56, 14536–14539 (2017).

    Article  CAS  Google Scholar 

  62. Jiang, Y. & Chen, C.-F. Recent developments in synthesis and applications of triptycene and pentiptycene derivatives. Eur. J. Org. Chem. 2011, 6377–6403 (2011).

    Article  CAS  Google Scholar 

  63. Jiang, X., Yang, S., Jellen, M. J., Houk, K. N. & Garcia-Garibay, M. Molecular spur gears with triptycene rotators and a norbornane-based stator. Org. Lett. 22, 4049–4052 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Jellen, M. J. et al. Enhanced gearing fidelity achieved through macrocyclization of a solvated molecular spur gear. J. Am. Chem. Soc. 143, 7740–7747 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Gerwien, A., Schildhauer, M., Thumser, S., Mayer, P. & Dube, H. Direct evidence for hula twist and single-bond rotation photoproducts. Nat. Commun. 9, 2510 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

H.D. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, Emmy Noether fellowship DU 1414/1-2 and SFB 749, A12). H.D. thanks the Cluster of Excellence ‘Center for Integrated Protein Science Munich’ (CIPSM) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and H.D. designed the molecular setup and experiments. A.G. and F.G. synthesized and characterized HTI-photogear 1 and conducted the photophysical, photochemical and kinetic experiments as well as quantitative analyses. P.M. determined the molecular structures in the crystalline state. H.D. coordinated the study and wrote the manuscript. All authors read and approved the paper.

Corresponding author

Correspondence to Henry Dube.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wataru Setaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary –Sections 1–4.8, Figs. 1–87, Tables 1–9 and equations 1–44.

Supplementary Video 1

Animated photogearing from isomer C to isomer B′.

Supplementary Video 2

Animated photogearing from isomer C to isomer B.

Supplementary Video 3

Animated photogearing from isomer D to isomer A.

Supplementary Video 4

Animated photogearing from isomer D to isomer B′.

Supplementary Data 1

XY data for all plots and numerical values for diagrams included in the supplementary information.

Supplementary Data 2

Crystallographic data for isomers C and A, with CCDC reference numbers 2086149 and 2086150, respectively.

Source data

Source Data Fig. 2

XY data for panels c and d; numerical values for panel e.

Source Data Fig. 3

XY data for panels bg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerwien, A., Gnannt, F., Mayer, P. et al. Photogearing as a concept for translation of precise motions at the nanoscale. Nat. Chem. 14, 670–676 (2022). https://doi.org/10.1038/s41557-022-00917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00917-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing