Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation

Abstract

The chemistry of carbohydrates has a history of over 100 years, but simple, stereoselective and efficient glycosylation methods remain highly needed to facilitate the studies of sugars in various disciplines. Here we report a strategy for 1,2-cis-glycosylation without using metals, strong (Lewis) acids, elaborate catalysts or labile substrates. Our method operates by a unique mechanism: it activates glycosyl donors through a radical cascade rather than the conventional acid-promoted, ionic process. As elucidated by computational and experimental studies, the allyl glycosyl sulfones (as donors) form halogen bond complexes with perfluoroalkyl iodides, which—merely by visible light irradiation—fragment via radical intermediates to give the electrophilic glycosyl iodides. In situ trapping by various nucleophiles affords, in a stereoconvergent manner, the challenging 1,2-cis-glycosides. This metal- and acid-free reaction shows remarkable tolerance to functional groups. The high stereoselectivity holds for a broad array of donors. This study suggests that the simple C2-alkoxy group can serve as an effective directing group for building 1,2-cis-glycosidic bonds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance of carbohydrates and approaches to build glycosidic bonds.
Fig. 2: Preliminary mechanistic studies.
Fig. 3: Mechanistic explanation for 1,2-cis selectivity.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available in the paper and its Supplementary Information files.

References

  1. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cummings, A. et al. Essentials of Glycobiology 3rd edn (Cold Spring Harbor Laboratory, 2009).

  3. Demchenko, A. V. Handbook of Chemical Glycosylation (Wiley-VCH, 2008).

  4. Werz, D. B. & Vidal S. Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates (Wiley-VCH, 2014).

  5. Danishefsky, S. J., Shue, Y.-K., Chang, M. N. & Wong, C.-H. Development of Globo-H cancer vaccine. Acc. Chem. Res. 48, 643–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Hung, S. C. & Zulueta, M. M. L. Glycochemical Synthesis: Strategies and Applications (Wiley-VCH, 2016)

  7. Bennett, C. S. Selective Glycosylations (Wiley-VCH, 2017).

  8. Michael, A. On the synthesis of helicon and phenolglucoside. Am. Chem. J. 1, 305–312 (1879).

    Article  Google Scholar 

  9. Fischer, E. Über die glucoside der alkohole. Chem. Ber. 26, 2400–2412 (1893).

    Article  Google Scholar 

  10. Lemieux, R. U., Hendriks, K. B., Stick, R. V. & James, K. Halide ion catalyzed glycosidation reactions. Syntheses of alpha-linked disaccharides. J. Am. Chem. Soc. 97, 4056–4062 (1997).

    Article  Google Scholar 

  11. Chatterjee, S., Moon, S., Hentschel, F., Gilmore, K. & Seeberger, P. H. An empirical understanding of the glycosylation reaction. J. Am. Chem. Soc. 140, 11942–11953 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Adero, P. O., Amarasekara, H., Wen, P., Bohé, L. & Crich, D. The experimental evidence in support of glycosylation mechanisms at the SN1–SN2 interface. Chem. Rev. 118, 8242–8284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vorm, S. et al. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 48, 4688–4706 (2019).

    Article  PubMed  Google Scholar 

  14. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, X. & Schmidt, R. R. New principles for glycoside‐bond formation. Angew. Chem. Int. Ed. 48, 1900–1934 (2009).

    Article  CAS  Google Scholar 

  16. Peng, P. & Schmidt, R. R. Acid–base catalysis in glycosidations: a nature derived alternative to the generally employed methodology. Acc. Chem. Res. 50, 1171–1183 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Seeberger, P. H. The logic of automated glycan assembly. Acc. Chem. Res. 48, 1450–1463 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Ray, D. & O’Doherty, G. A. in Protecting Groups: Strategies and Applications in Carbohydrate Chemistry (ed. Vidal, S.) Ch 9 (Wiley, 2019).

  19. Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, B. Gold(I)-catalyzed glycosylation with glycosyl o-alkynylbenzoates as donors. Acc. Chem. Res. 51, 507–516 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, L., Qin, Q. & Ye, X.-S. Preactivation: an alternative strategy in stereoselective glycosylation and oligosaccharide synthesis. Asian J. Org. Chem. 2, 30–49 (2013).

    Article  CAS  Google Scholar 

  22. Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wadzinski, T. J. et al. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nat. Chem. 10, 644–652 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, F. et al. Diastereoselective sp3 C–O bond formation via visible light-induced, copper-catalyzed cross-couplings of glycosyl bromides with aliphatic alcohols. ACS Catal. 10, 5990–6001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Q., Levi, S. M. & Jacobsen, E. N. Highly selective β-mannosylations and β-rhamnosylations catalyzed by bis-thiourea. J. Am. Chem. Soc. 142, 11865–11872 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiao, X. et al. Remote activation of disarmed thioglycosides in latent–active glycosylation via interrupted Pummerer reaction. J. Am. Chem. Soc. 138, 13402–13407 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Crich, D. En route to the transformation of glycoscience: a chemist’s perspective on internal and external crossroads in glycochemistry. J. Am. Chem. Soc. 143, 17–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Krasnova, L. & Wong, C.-H. Oligosaccharide synthesis and translational innovation. J. Am. Chem. Soc. 141, 3735–3754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pitzer, L., Schwarz, J. L. & Glorius, F. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 10, 8285–8291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wiles, R. J. & Molander, G. A. Photoredox-mediated net-neutral radical/polar crossover reactions. Isr. J. Chem. 60, 281–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Timpa, J. D. & Griffin, G. W. Photoinduced, electron-transfer reactions of aryl glycosides. Carbohydr. Res. 131, 185–196 (1984).

    Article  CAS  Google Scholar 

  32. Yamago, S., Hashidume, M. & Yoshida, J.-I. A new synthetic route to substituted quinones by radical-mediated coupling of organotellurium compounds with quinones. Tetrahedron 58, 6805–6813 (2002).

    Article  CAS  Google Scholar 

  33. Furuta, T., Takeuchi, K. & Iwamura, M. Activation of selenoglycosides by photoinduced electron transfer. Chem. Commun. 1996, 157–158 (1996).

    Article  Google Scholar 

  34. Mao, R., Guo, F., Xiong, D., Lin, Q. & Ye, X. Photoinduced C−S bond cleavage of thioglycosides and glycosylation. Org. Lett. 17, 5606–5609 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Wan, L.-Q. et al. Non-enzymatic stereoselective S-glycosylation of polypeptides and proteins. J. Am. Chem. Soc. 143, 11919–11926 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Nigudkar, S. S. & Demchenko, A. V. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem. Sci. 6, 2687–2704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mensink, R. A. & Boltje, T. J. Advances in stereoselective 1,2‐cis glycosylation using C‐2 auxiliaries. Chem. Eur. J. 23, 17637–17653 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Scheiner, S. Noncovalent Forces (Springer, 2015).

  39. Loh, C. C. J. Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat. Rev. Chem. 5, 792–815 (2021).

    Article  CAS  Google Scholar 

  40. Kobashi, Y. & Mukaiyama, T. Highly α-selective glycosylation with glycosyl acetate via glycosyl phosphonium iodide. Chem. Lett. 33, 874–875 (2004).

    Article  CAS  Google Scholar 

  41. Wang, L., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. C. Reagent controlled stereoselective synthesis of α-glucans. J. Am. Chem. Soc. 140, 4632–4638 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meloncelli, P. J., Martin, A. D. & Lowary, T. L. Glycosyl iodides. History and recent advances. Carbohydr. Res. 344, 1110–1122 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Gervay-Hague, J. Taming the reactivity of glycosyl iodides to achieve stereoselective glycosidation. Acc. Chem. Res. 49, 35–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Sun, X., Wang, W., Li, Y., Ma, J. & Yu, S. Halogen-bond-promoted double radical isocyanide insertion under visible-light irradiation: synthesis of 2-fluoroalkylated quinoxalines. Org. Lett. 18, 4638–4641 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Bracker, M., Helmecke, L., Kleinschmidt, M., Czekelius, C. & Marian, C. M. Visible light-induced homolytic cleavage of perfluoroalkyl iodides mediated by phosphines. Molecules 25, 1606 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  46. Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quiclet-Sire, B. & Zard, S. Z. New radical allylation reaction. J. Am. Chem. Soc. 118, 1209–1210 (1996).

    Article  CAS  Google Scholar 

  48. Xia, Y. & Studer, A. Diversity-oriented desulfonylative functionalization of alkyl allyl sulfones. Angew. Chem. Int. Ed. 58, 9836–9840 (2019).

    Article  CAS  Google Scholar 

  49. Castelli, R. et al. Activation of glycosyl halides by halogen bonding. Chem. Asian J. 9, 2095–2098 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Kobayashi, Y., Nakatsuji, Y., Li, S., Tsuzuki, S. & Takemoto, Y. Direct N-glycofunctionalization of amides with glycosyl trichloroacetimidate by thiourea/halogen bond donor co-catalysis. Angew. Chem. Int. Ed. 57, 3646 (2018).

    Article  CAS  Google Scholar 

  51. Xu, C. & Loh, C. C. J. A multistage halogen bond catalyzed strain-release glycosylation unravels new hedgehog signaling inhibitors. J. Am. Chem. Soc. 141, 5381–5391 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, C., Rao, V. U. B., Weigen, J. & Loh, C. C. J. A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nat. Commun. 11, 4911 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mayfield, A. B., Metternich, J. B., Trotta, A. H. & Jacobsen, E. N. Stereospecific furanosylations catalyzed by bis-thiourea hydrogen-bond donors. J. Am. Chem. Soc. 142, 4061–4069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crich, D. Mechanism of a chemical glycosylation reaction. Acc. Chem. Res. 43, 1144–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Cumpstey, I. Intramolecular aglycone delivery. Carbohydr. Res. 343, 1553–1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Yasomanee, J. P. & Demchenko, A. V. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 134, 20097–20102 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Yasomanee, J. P. & Demchenko, A. V. Hydrogen bond mediated aglycone delivery: synthesis of linear and branched α-glucans. Angew. Chem. Int. Ed. 53, 10453–10456 (2014).

    Article  CAS  Google Scholar 

  58. Khanam, A. & Mandal, K. P. Influence of remote picolinyl and picoloyl stereodirecting groups for the stereoselective glycosylation. Asian J. Org. Chem. 10, 296–314 (2021).

    Article  CAS  Google Scholar 

  59. Liu, Q.-W., Bin, H.-C. & Yang, J.-S. β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org. Lett. 15, 3974–3977 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Boltje, T. J., Kim, J.-H., Park, J. & Boons, G.-J. Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched α-glucan. Nat. Chem. 2, 552–557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.N. is supported by funding from National Natural Science Foundation of China (nos. 21922106 and 21772125) and the 1.3.5 Project for Disciplines of Excellence, West China Hospital. Additional support (K.N.H.) came from the National Science Foundation of the United States (CHE-1764328). We acknowledge J.-S. Yang (SCU) for helpful discussions. We thank X. Wang from the Analytical and Testing Center of Sichuan University for NMR experiments.

Author information

Authors and Affiliations

Authors

Contributions

D.N. conceived the idea, guided the project and wrote the manuscript with feedback from other authors. C.Z. made the initial observations and analysed the results. C.Z., H.Z. and Q.-D.D. explored the substrate scope and performed the mechanistic studies. Y.Z., G.Y.L. and C.Z. performed the density functional theory calculations on the reaction mechanism under the advice of K.N.H.

Corresponding authors

Correspondence to K. N. Houk or Dawen Niu.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Chemistry thanks Pedro Merino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–9, discussion, experimental methods and data, computational studies, NMR spectra and references.

Supplementary Data 1

Cartesian coordinates for computed species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zuo, H., Lee, G.Y. et al. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat. Chem. 14, 686–694 (2022). https://doi.org/10.1038/s41557-022-00918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00918-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing