Research articles

Filter By:

Article Type
  • Systems which sustain quasiparticle complexes can exhibit unique optical features and unusual physical properties. Here the authors investigate highly doped bulk semiconductors and provide experimental evidence to suggest a new type of neutral, degenerate electron gas-stabilized quasiparticle which they term a collexon.

    • C. Nenstiel
    • G. Callsen
    • F. Bechstedt
    ArticleOpen Access
  • The discovery of topological insulators has given rise to a flourishing field dedicated to the investigation of the topological state of matter. This manuscript contributes to this field by introducing the idea of a topoelectrical circuit, whereby an assembly of conventional circuit elements realises various topological band structures.

    • Ching Hua Lee
    • Stefan Imhof
    • Ronny Thomale
    ArticleOpen Access
  • Organic field-effect transistors are expected to become a key component of future integrated circuits. The authors seek to improve the performance of devices based on these materials by investigating the effect of flicker noise in a solution-processed organic single crystal transistor.

    • Shun Watanabe
    • Hirotaka Sugawara
    • Jun Takeya
    ArticleOpen Access
  • The way many natural surfaces transport water has been a fascinating subject for many centuries. The paper presents an experimental and theoretical investigation of droplets transport on the peristome of pitcher plants and shows that this depends on the multiscale structures of both the surface and the water.

    • Jiaqian Li
    • Huanxi Zheng
    • Zuankai Wang
    ArticleOpen Access
  • Fourier transform spectroscopy has been effective in overcoming detector noise for both analytical and applied scientific disciplines. The authors present a modification of a stationary Fourier transform spectrometer that efficiently utilizes imaging detectors to improve the measured spectral resolution of broadband optical signals

    • Brandon Hong
    • Faraz Monifi
    • Yeshaiahu Fainman
    ArticleOpen Access
  • Cold and ultracold atomic gases can be used as simulators in order to analyse classical and quantum features of exotic magnetic phenomena. By applying an external magnetic field to a cold atomic gas in a self-organised optical lattice the authors demonstrate transitions between different magnetic phases via optically mediated spin-spin interactions.

    • I. Krešić
    • G. Labeyrie
    • T. Ackemann
    ArticleOpen Access
  • Ultracold atoms serve as ideal systems for precise studies of light-matter interaction. The authors report on absolute strong-field ionization probabilities of rubidium atoms exposed to femtosecond laser pulses and show that Ab-initio theory is in perfect agreement with the data at Keldysh parameters near unity.

    • Philipp Wessels
    • Bernhard Ruff
    • Juliette Simonet
    ArticleOpen Access
  • Skyrmions are magnetic topological features which are expected to play an important role in future data storage and information processing devices. The authors outline a theoretical method to calculate the size and wall width of an isolated skyrmion.

    • X. S. Wang
    • H. Y. Yuan
    • X. R. Wang
    ArticleOpen Access
  • Motile cilia are organelles found in eukaryotic cells and serve to swim or generate surface flows. The paper presents a theoretical and experimental study showing the systematic link between synchronisation state and the beating motion of active biological filaments.

    • Armando Maestro
    • Nicolas Bruot
    • Pietro Cicuta
    ArticleOpen Access
  • The compound NbSe2 has been the subject of considerable interest because of its unusual electronic behaviour, making it a prototypical material for understanding exotic phenomena. By tilting  the magnetic field the authors are able to more clearly analyse features of its electronic structure at the surface of NbSe2 using scanning tunnelling microscopy.

    • J. A. Galvis
    • E. Herrera
    • H. Suderow
    ArticleOpen Access
  • Ramsey interferometers are used as a general tool of spectroscopy and matter wave interferometry. The authors demonstrate an echo- Ramsey interferometer that uses trapped quantum states in an optical lattice as a new tool to study coherence in many body quantum systems.

    • Dong Hu
    • Linxiao Niu
    • Xiaoji Zhou
    ArticleOpen Access
  • Organic solar cells with small molecule acceptors achieve promising high efficiencies. The authors use numerical simulations to explain under which circumstances complementary absorption or overlapping absorption bands of the donor and non-fullerene acceptor molecules will be more beneficial for efficiency.

    • Lisa Krückemeier
    • Pascal Kaienburg
    • Thomas Kirchartz
    ArticleOpen Access
  • Non-equilibrium dynamics of cold atoms have recently attracted attention revealing unconventional phenomena. The authors report here the experimental observation of a non-equilibrium steady state in a hybrid trap composed of a magneto-optical trap and a moving optical lattice.

    • Kyeong Ock Chong
    • Jung-Ryul Kim
    • Kyungwon An
    ArticleOpen Access
  • Characterizing the non-equilibrium phase transition to a Bose-Einstein condensate is an open problem in condensed matter physics. The authors perform a detailed numerical characterization of this dynamical process, providing insights into the equilibration process after crossing the transition.

    • I.-K. Liu
    • S. Donadello
    • N. P. Proukakis
    ArticleOpen Access
  • Formation of stable coherent structures is a fundamental physical phenomenon that occurs in various systems. This paper presents dissipative soliton build-up in mode-locked fibre lasers and investigate spectral and temporal evolution observing nonlinear dynamics ahead of the formation of a stable dissipative soliton.

    • Junsong Peng
    • Mariia Sorokina
    • Heping Zeng
    ArticleOpen Access
  • A better understanding of heat-transfer mechanisms is essential to designing more efficient cooling systems for high-energy devices. Using a micron-sized hot-spot, the authors investigate the dynamics of the nucleation and growth of a single vapour bubble from the micro to nanoscale.

    • Mehrdad Mehrvand
    • Shawn A. Putnam
    ArticleOpen Access
  • Ultrasound-driven encapsulated microbubbles show great promise as convenient transport vehicles for local drug delivery. This manuscript reports the development of a theoretical framework validated by experiments for understanding the role of non-spherical oscillations in ultrasound-mediated release of a drug payload from targeted microbubbles.

    • Guillaume Lajoinie
    • Ying Luan
    • Michel Versluis
    ArticleOpen Access