Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers

Abstract

Recurrent or metastatic cancer in most cases remains an incurable disease, and thus alternative treatment strategies, such as oncolytic virotherapy, are of great interest for clinical application. Oncolytic adenoviruses (Ads) have many advantages as virotherapeutic agents and have been safely employed in the clinics. However, the efficacy of oncolytic Ads is insufficient to eradicate tumors and current clinical applications are restricted to local administration against primary tumors because of immunological obstacles and poor tumor-cell targeting. Thus, alternative viable approaches are needed to establish therapies based on oncolytic Ad that will eliminate both primary and metastatic cancers. To this end, rational design of oncolytic Ads that express immunostimulatory genes has been employed. Even when restricted to local viral delivery, these oncolytic Ad-based immunotherapeutics have been shown to exert systemic antitumor immunity and result in eradication of both primary and metastatic cancers. Moreover, oncolytic Ad-based immunotherapeutics in combination with either dendritic cell-based vaccine or radiotherapy further strengthen the systemic tumor-specific immunity, resulting in complete suppression of both local and distant tumor metastatic growth. This review will focus on the most recent updates in strategies to develop potent oncolytic Ad-based immunotherapeutics for use in cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kim ES, Glisson BS . Treatment of metastatic head and neck cancer: chemotherapy and novel agents. Cancer Treat Res 2003; 114: 295–314.

    PubMed  Google Scholar 

  2. Chang J, Clark GM, Allred DC, Mohsin S, Chamness G, Elledge RM . Survival of patients with metastatic breast carcinoma: importance of prognostic markers of the primary tumor. Cancer 2003; 97: 545–553.

    PubMed  Google Scholar 

  3. Choi JW, Lee JS, Kim SW, Yun CO . Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev 2012; 64: 720–729.

    CAS  PubMed  Google Scholar 

  4. Green M, Daesch GE . Biochemical studies on adenovirus multiplication. II. Kinetics of nucleic acid and protein synthesis in suspension cultures. Virology 1961; 13: 169–176.

    CAS  PubMed  Google Scholar 

  5. Choi KJ, Kim JH, Lee YS, Kim J, Suh BS, Kim H et al. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Therapy 2006; 13: 1010–1020.

    CAS  PubMed  Google Scholar 

  6. Kirn D, Hermiston T, McCormick F . ONYX-015: clinical data are encouraging. Nat Med 1998; 4: 1341–1342.

    CAS  PubMed  Google Scholar 

  7. Kirn D . Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results of phase I and II trials. Expert Opin Biol Ther 2001; 1: 525–538.

    CAS  PubMed  Google Scholar 

  8. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Therapy 2001; 8: 89–98.

    CAS  PubMed  Google Scholar 

  9. Pesonen S, Kangasniemi L, Hemminki A . Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm 2011; 8: 12–28.

    CAS  PubMed  Google Scholar 

  10. Cody JJ, Douglas JT . Armed replicating adenoviruses for cancer virotherapy. Cancer Gene Therapy 2009; 16: 473–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hermiston TW, Kuhn I . Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9: 1022–1035.

    CAS  PubMed  Google Scholar 

  12. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007; 4: 101–117.

    CAS  PubMed  Google Scholar 

  13. Van Dyke TA . Analysis of viral–host protein interactions and tumorigenesis in transgenic mice. Semin Cancer Biol 1994; 5: 47–60.

    CAS  PubMed  Google Scholar 

  14. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    CAS  PubMed  Google Scholar 

  15. Bett AJ, Prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993; 67: 5911–5921.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauzon M, Castro D, Karr M, Hawkins LK, Hermiston TW . Multigene expression from a replicating adenovirus using native viral promoters. Mol Ther 2003; 7: 526–534.

    CAS  PubMed  Google Scholar 

  17. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Therapy 2001; 8: 1142–1148.

    CAS  PubMed  Google Scholar 

  18. Toth K, Dhar D, Wold WS . Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin Biol Ther 2010; 10: 353–368.

    CAS  PubMed  Google Scholar 

  19. Barzon L, Zanusso M, Colombo F, Palu G . Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant gliomas. Cancer Gene Ther 2006; 13: 539–554.

    CAS  PubMed  Google Scholar 

  20. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    CAS  PubMed  Google Scholar 

  21. Alemany R . Cancer selective adenoviruses. Mol Aspects Med 2007; 28: 42–58.

    CAS  PubMed  Google Scholar 

  22. Kumar S, Gao L, Yeagy B, Reid T . Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther 2008; 10: 371–379.

    PubMed  Google Scholar 

  23. Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Soutar DS, Otto R et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000; 6: 798–806.

    CAS  PubMed  Google Scholar 

  24. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000; 60: 6359–6366.

    CAS  PubMed  Google Scholar 

  25. Crompton AM, Kirn DH . From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 2007; 7: 133–139.

    CAS  PubMed  Google Scholar 

  26. Cichon G, Schmidt HH, Benhidjeb T, Loser P, Ziemer S, Haas R et al. Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J Gene Med 1999; 1: 360–371.

    CAS  PubMed  Google Scholar 

  27. Danielsson A, Elgue G, Nilsson BM, Nilsson B, Lambris JD, Totterman TH et al. An ex vivo loop system models the toxicity and efficacy of PEGylated and unmodified adenovirus serotype 5 in whole human blood. Gene Therapy 2010; 17: 752–762.

    CAS  PubMed  Google Scholar 

  28. Alemany R, Suzuki K, Curiel DT . Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 2000; 81 (Part 11): 2605–2609.

    CAS  PubMed  Google Scholar 

  29. Wohlfart C . Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J Virol 1988; 62: 2321–2328.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mastrangeli A, Harvey BG, Yao J, Wolff G, Kovesdi I, Crystal RG et al. ‘Sero-switch’ adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther 1996; 7: 79–87.

    CAS  PubMed  Google Scholar 

  31. Zhang JF, Hu C, Geng Y, Selm J, Klein SB, Orazi A et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci USA 1996; 93: 4513–4518.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaffen SL, Liu KD . Overview of interleukin-2 function, production and clinical applications. Cytokine 2004; 28: 109–123.

    CAS  PubMed  Google Scholar 

  33. Smyth MJ, Taniguchi M, Street SE . The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 2000; 165: 2665–2670.

    CAS  PubMed  Google Scholar 

  34. Waldmann TA . The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6: 595–601.

    CAS  PubMed  Google Scholar 

  35. Micallef MJ, Yoshida K, Kawai S, Hanaya T, Kohno K, Arai S et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother 1997; 43: 361–367.

    CAS  PubMed  Google Scholar 

  36. Shashkova EV, Spencer JF, Wold WS, Doronin K . Targeting interferon-alpha increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread-enhanced oncolytic adenovirus. Mol Ther 2007; 15: 598–607.

    CAS  PubMed  Google Scholar 

  37. Su C, Peng L, Sham J, Wang X, Zhang Q, Chua D et al. Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-gamma gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Mol Ther 2006; 13: 918–927.

    CAS  PubMed  Google Scholar 

  38. Dranoff G . GM-CSF-based cancer vaccines. Immunol Rev 2002; 188: 147–154.

    CAS  PubMed  Google Scholar 

  39. Wang G, Tschoi M, Spolski R, Lou Y, Ozaki K, Feng C et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 2003; 63: 9016–9022.

    CAS  PubMed  Google Scholar 

  40. Overwijk WW, de Visser KE, Tirion FH, de Jong LA, Pols TW, van der Velden YU et al. Immunological and antitumor effects of IL-23as a cancer vaccine adjuvant. J Immunol 2006; 176: 5213–5222.

    CAS  PubMed  Google Scholar 

  41. Salcedo R, Stauffer JK, Lincoln E, Back TC, Hixon JA, Hahn C et al. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J Immunol 2004; 173: 7170–7182.

    CAS  PubMed  Google Scholar 

  42. Orange JS, Salazar-Mather TP, Opal SM, Spencer RL, Miller AH, McEwen BS et al. Mechanism of interleukin 12-mediated toxicities during experimental viral infections: role of tumor necrosis factor and glucocorticoids. J Exp Med 1995; 181: 901–914.

    CAS  PubMed  Google Scholar 

  43. Siegel JP, Puri RK . Interleukin-2 toxicity. J Clin Oncol 1991; 9: 694–704.

    CAS  PubMed  Google Scholar 

  44. Cohen J . IL-12 deaths: explanation and a puzzle. Science 1995; 270: 908.

    CAS  PubMed  Google Scholar 

  45. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 1997; 90: 2541–2548.

    CAS  PubMed  Google Scholar 

  46. Thompson TC, Timme TL, Ebara S, Satoh T, Yang G, Wang J et al. In situ gene therapy for prostate cancer: immunomodulatory approaches. Expert Opin Biol Ther 2001; 1: 481–495.

    CAS  PubMed  Google Scholar 

  47. Bristol JA, Zhu M, Ji H, Mina M, Xie Y, Clarke L et al. In vitro and in vivo activities of an oncolytic adenoviral vector designed to express GM-CSF. Mol Ther 2003; 7: 755–764.

    CAS  PubMed  Google Scholar 

  48. Post DE, Sandberg EM, Kyle MM, Devi NS, Brat DJ, Xu Z et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res 2007; 67: 6872–6881.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Qian W, Liu J, Tong Y, Yan S, Yang C, Yang M et al. Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia 2008; 22: 361–369.

    CAS  PubMed  Google Scholar 

  50. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    CAS  PubMed  Google Scholar 

  51. Aste-Amezaga M, D’Andrea A, Kubin M, Trinchieri G . Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol 1994; 156: 480–492.

    CAS  PubMed  Google Scholar 

  52. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res 2007; 13: 4677–4685.

    CAS  PubMed  Google Scholar 

  53. Lee YS, Kim JH, Choi KJ, Choi IK, Kim H, Cho S et al. Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin Cancer Res 2006; 12: 5859–5868.

    CAS  PubMed  Google Scholar 

  54. Bortolanza S, Bunuales M, Otano I, Gonzalez-Aseguinolaza G, Ortiz-de-Solorzano C, Perez D et al. Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters. Mol Ther 2009; 17: 614–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H . The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–2368.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G . Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte–macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 2000; 60: 3239–3246.

    CAS  PubMed  Google Scholar 

  57. Jinushi M, Tahara H . Cytokine gene-mediated immunotherapy: current status and future perspectives. Cancer Sci 2009; 100: 1389–1396.

    CAS  PubMed  Google Scholar 

  58. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12: 305–313.

    CAS  PubMed  Google Scholar 

  59. Chang J, Zhao X, Wu X, Guo Y, Guo H, Cao J et al. A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol Ther 2009; 8: 676–682.

    CAS  PubMed  Google Scholar 

  60. Zheng JN, Pei DS, Mao LJ, Liu XY, Sun FH, Zhang BF et al. Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther 2010; 17: 28–36.

    CAS  PubMed  Google Scholar 

  61. Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 2005; 16: 845–858.

    CAS  PubMed  Google Scholar 

  62. Choi IK, Lee JS, Zhang SN, Park J, Sonn CH, Lee KM et al. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rbeta2 or IL-18Ralpha. Gene Therapy 2011; 18: 898–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi KJ, Zhang SN, Choi IK, Kim JS, Yun CO . Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Therapy 2012; 19: 711–723.

    CAS  PubMed  Google Scholar 

  64. Chen L, McGowan P, Ashe S, Johnston J, Li Y, Hellstrom I et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 1994; 179: 523–532.

    CAS  PubMed  Google Scholar 

  65. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 1991; 146: 3074–3081.

    CAS  PubMed  Google Scholar 

  66. Linsley PS, Ledbetter JA . The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11: 191–212.

    CAS  PubMed  Google Scholar 

  67. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ . Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 1994; 180: 631–640.

    CAS  PubMed  Google Scholar 

  68. Huang JH, Zhang SN, Choi KJ, Choi IK, Kim JH, Lee MG et al. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol Ther 2010; 18: 264–274.

    CAS  PubMed  Google Scholar 

  69. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188: 373–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG . Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res 2003; 63: 5505–5512.

    CAS  PubMed  Google Scholar 

  71. Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS et al. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 2004; 114: 1334–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006; 24: 191–201.

    CAS  PubMed  Google Scholar 

  73. Lapteva N, Aldrich M, Weksberg D, Rollins L, Goltsova T, Chen SY et al. Targeting the intratumoral dendritic cells by the oncolytic adenoviral vaccine expressing RANTES elicits potent antitumor immunity. J Immunother 2009; 32: 145–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Edukulla R, Woller N, Mundt B, Knocke S, Gurlevik E, Saborowski M et al. Antitumoral immune response by recruitment and expansion of dendritic cells in tumors infected with telomerase-dependent oncolytic viruses. Cancer Res 2009; 69: 1448–1458.

    PubMed  Google Scholar 

  75. Todryk SM, Gough MJ, Pockley AG . Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 2003; 110: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Srivastava P . Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002; 20: 395–425.

    CAS  PubMed  Google Scholar 

  77. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6: 435–442.

    CAS  PubMed  Google Scholar 

  78. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 1999; 27: 1627–1636.

    CAS  PubMed  Google Scholar 

  79. Huang XF, Ren W, Rollins L, Pittman P, Shah M, Shen L et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res 2003; 63: 7321–7329.

    CAS  PubMed  Google Scholar 

  80. Li JL, Liu HL, Zhang XR, Xu JP, Hu WK, Liang M et al. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Therapy 2009; 16: 376–382.

    CAS  PubMed  Google Scholar 

  81. Di Paolo NC, Tuve S, Ni S, Hellstrom KE, Hellstrom I, Lieber A . Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses. Cancer Res 2006; 66: 960–969.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18: 245–273.

    CAS  PubMed  Google Scholar 

  83. Steinman RM . Dendritic cells and immune-based therapies. Exp Hematol 1996; 24: 859–862.

    CAS  PubMed  Google Scholar 

  84. Galea-Lauri J, Wells JW, Darling D, Harrison P, Farzaneh F . Strategies for antigen choice and priming of dendritic cells influence the polarization and efficacy of antitumor T-cell responses in dendritic cell-based cancer vaccination. Cancer Immunol Immunother 2004; 53: 963–977.

    CAS  PubMed  Google Scholar 

  85. Proudfoot O, Pouniotis D, Sheng KC, Loveland BE, Pietersz GA . Dendritic cell vaccination. Expert Rev Vaccines 2007; 6: 617–633.

    CAS  PubMed  Google Scholar 

  86. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    CAS  PubMed  Google Scholar 

  87. Di Nicola M, Zappasodi R, Carlo-Stella C, Mortarini R, Pupa SM, Magni M et al. Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood 2009; 113: 18–27.

    CAS  PubMed  Google Scholar 

  88. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002; 100: 230–237.

    CAS  PubMed  Google Scholar 

  89. Sica A, Bronte V . Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117: 1155–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang SN, Choi IK, Huang JH, Yoo JY, Choi KJ, Yun CO . Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 2011; 19: 1558–1568.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Prise KM, O’Sullivan JM . Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009; 9: 351–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mothersill C, Seymour CB . Radiation-induced bystander effects—implications for cancer. Nat Rev Cancer 2004; 4: 158–164.

    CAS  PubMed  Google Scholar 

  93. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM . Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 2005; 174: 7516–7523.

    CAS  PubMed  Google Scholar 

  94. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–1059.

    CAS  PubMed  Google Scholar 

  95. Schaue D, Comin-Anduix B, Ribas A, Zhang L, Goodglick L, Sayre JW et al. T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res 2008; 14: 4883–4890.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee Y, Auh SL, Wang Y, Burnette B, Meng Y, Beckett M et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 2009; 114: 589–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H et al. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 2010; 70: 2697–2706.

    CAS  PubMed  Google Scholar 

  98. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220: 47–59.

    CAS  PubMed  Google Scholar 

  99. Nikitina EY, Gabrilovich DI . Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 2001; 94: 825–833.

    CAS  PubMed  Google Scholar 

  100. Teitz-Tennenbaum S, Li Q, Rynkiewicz S, Ito F, Davis MA, McGinn CJ et al. Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 2003; 63: 8466–8475.

    CAS  PubMed  Google Scholar 

  101. Lee J, Moran JP, Fenton BM, Koch CJ, Frelinger JG, Keng PC et al. Alteration of tumour response to radiation by interleukin-2 gene transfer. Br J Cancer 2000; 82: 937–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim W, Seong J, Oh HJ, Koom WS, Choi KJ, Yun CO . A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res 2011; 52: 646–654.

    CAS  PubMed  Google Scholar 

  103. Fulci G, Ishii N, Van Meir EG . p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol 1998; 8: 599–613.

    CAS  PubMed  Google Scholar 

  104. Zhang M, Li S, Li J, Ensminger WD, Lawrence TS . Ionizing radiation increases adenovirus uptake and improves transgene expression in intrahepatic colon cancer xenografts. Mol Ther 2003; 8: 21–28.

    PubMed  Google Scholar 

  105. Aghi M, Hochberg F, Breakefield XO . Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000; 2: 148–164.

    CAS  PubMed  Google Scholar 

  106. Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001; 61: 5453–5460.

    CAS  PubMed  Google Scholar 

  107. Odaka M, Sterman DH, Wiewrodt R, Zhang Y, Kiefer M, Amin KM et al. Eradication of intraperitoneal and distant tumor by adenovirus-mediated interferon-beta gene therapy is attributable to induction of systemic immunity. Cancer Res 2001; 61: 6201–6212.

    CAS  PubMed  Google Scholar 

  108. Odaka M, Wiewrodt R, DeLong P, Tanaka T, Zhang Y, Kaiser L et al. Analysis of the immunologic response generated by Ad.IFN-beta during successful intraperitoneal tumor gene therapy. Mol Ther 2002; 6: 210–218.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to Dr C-O Yun from the Ministry of Knowledge Economy (10030051), the Korea Science and Engineering Foundation (2009K001644, 2010-0029220) and the National R&D Program for Cancer Control, Ministry for Health and Welfare (0720500), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-O Yun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, IK., Yun, CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther 20, 70–76 (2013). https://doi.org/10.1038/cgt.2012.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.95

Keywords

This article is cited by

Search

Quick links