Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling and targeting mechanical forces in organ fibrosis

Abstract

Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell–matrix interactions, cell–cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.

Key points

  • Fibrosis — the replacement of normal tissues with matrix-rich connective tissue — is a common response to trauma, autoimmune reactions, radiation and other insults, and can occur in almost every organ.

  • Fibrotic disease is initiated and propagated by a variety of physical forces, including cell–matrix, cell–cell, osmotic and viscous, as well as physical confinement and nuclear forces.

  • Fibrosis models can be engineered to study mechanotransduction pathways specific to each type of physical force.

  • Molecular and biomaterials-based therapies have been developed to treat fibrosis by modulating mechanotransduction.

  • Multiomics analysis, next-generation models and biomaterials as well as advanced tools for the quantification of fibrosis will further advance fibrosis research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical stimuli and associated downstream mechanotransduction signalling pathways.
Fig. 2: Biomaterials for the treatment and modelling of fibrosis.
Fig. 3: Mechanotransduction signalling targets in fibrosis.
Fig. 4: Platforms and molecular tools to study fibrosis.

Similar content being viewed by others

References

  1. Bayat, A., McGrouther, D. A. & Ferguson, M. W. Skin scarring. BMJ 326, 88–92 (2003).

    Article  Google Scholar 

  2. Atiyeh, B. S. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods. Aesthetic Plast. Surg. 31, 468–492 (2007). Discussion 493–464.

    Article  Google Scholar 

  3. Alster, T. S. & Tanzi, E. L. Hypertrophic scars and keloids: etiology and management. Am. J. Clin. Dermatol. 4, 235–243 (2003).

    Article  Google Scholar 

  4. Ngaage, M. & Agius, M. The psychology of scars: a mini-review. Psychiatr. Danub. 30, 633–638 (2018).

    Google Scholar 

  5. Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  Google Scholar 

  6. Gieseck, R. L. 3rd, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  Google Scholar 

  7. Kaur, A., Mathai, S. K. & Schwartz, D. A. Genetics in idiopathic pulmonary fibrosis pathogenesis, prognosis, and treatment. Front. Med. 4, 154 (2017).

    Article  Google Scholar 

  8. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    Article  Google Scholar 

  9. Li, S. et al. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 272, 30455–30462 (1997).

    Article  Google Scholar 

  10. Wilson, E., Sudhir, K. & Ives, H. E. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Invest. 96, 2364–2372 (1995).

    Article  Google Scholar 

  11. Kuipers, A. J., Middelbeek, J. & van Leeuwen, F. N. Mechanoregulation of cytoskeletal dynamics by TRP channels. Eur. J. Cell Biol. 91, 834–846 (2012).

    Article  Google Scholar 

  12. Tschumperlin, D. J. et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83–86 (2004).

    Article  Google Scholar 

  13. Zeng, Y. et al. CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced endothelial cell migration. Cytokine 53, 42–51 (2011).

    Article  Google Scholar 

  14. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  Google Scholar 

  15. Alenghat, F. J. & Ingber, D. E. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE 2002, pe6 (2002).

    Article  Google Scholar 

  16. Krammer, A., Lu, H., Isralewitz, B., Schulten, K. & Vogel, V. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc. Natl Acad. Sci. USA 96, 1351–1356 (1999).

    Article  Google Scholar 

  17. Martino, F., Perestrelo, A. R., Vinarsky, V., Pagliari, S. & Forte, G. Cellular mechanotransduction: from tension to function. Front. Physiol. 9, 824 (2018).

    Article  Google Scholar 

  18. Deng, Z. et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int. J. Biochem. Cell Biol. 126, 105802 (2020).

    Article  Google Scholar 

  19. Lu, F. et al. Microdeformation of three-dimensional cultured fibroblasts induces gene expression and morphological changes. Ann. Plast. Surg. 66, 296–300 (2011).

    Article  Google Scholar 

  20. Webb, K. et al. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J. Biomech. 39, 1136–1144 (2006).

    Article  Google Scholar 

  21. Dallon, J. C. & Ehrlich, H. P. A review of fibroblast-populated collagen lattices. Wound Repair. Regen. 16, 472–479 (2008).

    Article  Google Scholar 

  22. Aarabi, S. et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 21, 3250–3261 (2007).

    Article  Google Scholar 

  23. Wong, V. W. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2011).

    Article  Google Scholar 

  24. Mascharak, S. et al. Preventing engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

    Article  Google Scholar 

  25. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 29, 315–327 e316 (2022).

    Article  Google Scholar 

  26. Clark, J. A., Cheng, J. C. & Leung, K. S. Mechanical properties of normal skin and hypertrophic scars. Burns 22, 443–446 (1996).

    Article  Google Scholar 

  27. Confalonieri, P. et al. Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells 11, 2095 (2022).

    Article  Google Scholar 

  28. Jandl, K. & Kwapiszewska, G. Stiffness of the extracellular matrix: a regulator of prostaglandins in pulmonary fibrosis? Am. J. Respir. Cell Mol. Biol. 63, 721–722 (2020).

    Article  Google Scholar 

  29. Giannandrea, M. & Parks, W. C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 7, 193–203 (2014).

    Article  Google Scholar 

  30. D’Alessio, S. et al. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat. Rev. Gastroenterol. Hepatol. 19, 169–184 (2022).

    Article  Google Scholar 

  31. Rieder, F., Fiocchi, C. & Rogler, G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology 152, 340–350 (2017).

    Article  Google Scholar 

  32. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 e37 (2018).

    Article  Google Scholar 

  33. Moya, I. M. & Halder, G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 211–226 (2019).

    Article  Google Scholar 

  34. Lovisa, S. Epithelial-to-mesenchymal transition in fibrosis: concepts and targeting strategies. Front. Pharmacol. 12, 737570 (2021).

    Article  Google Scholar 

  35. Liu, L. et al. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. Burns Trauma 10, tkac011 (2022).

    Article  Google Scholar 

  36. Kim, K. K. et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J. Clin. Invest. 119, 213–224 (2009).

    Google Scholar 

  37. Horejs, C. M. et al. Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 5908–5913 (2014).

    Article  Google Scholar 

  38. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    Article  Google Scholar 

  39. Wu, M. et al. Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis. Arthritis Rheumatol. 66, 1010–1021 (2014).

    Article  Google Scholar 

  40. Pittet, P., Lee, K., Kulik, A. J., Meister, J. J. & Hinz, B. Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J. Cell Sci. 121, 877–886 (2008).

    Article  Google Scholar 

  41. Urushima, H. et al. Activation of hepatic stellate cells requires dissociation of E-cadherin-containing adherens junctions with hepatocytes. Am. J. Pathol. 191, 438–453 (2021).

    Article  Google Scholar 

  42. Mitten, E. K. & Baffy, G. Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 77, 1642–1656 (2022).

    Article  Google Scholar 

  43. Dasgupta, I. & McCollum, D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J. Biol. Chem. 294, 17693–17706 (2019).

    Article  Google Scholar 

  44. Bracco Gartner, T. C. L. et al. Advanced in vitro modeling to study the paradox of mechanically induced cardiac fibrosis. Tissue Eng. Part C 27, 100–114 (2021).

    Article  Google Scholar 

  45. Beyer, C. et al. beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann. Rheum. Dis. 71, 761–767 (2012).

    Article  Google Scholar 

  46. Watanabe, Y. et al. Integrins induce expression of monocyte chemoattractant protein-1 via focal adhesion kinase in mesangial cells. Kidney Int. 64, 431–440 (2003).

    Article  Google Scholar 

  47. Dahl, K. N., Ribeiro, A. J. & Lammerding, J. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102, 1307–1318 (2008).

    Article  Google Scholar 

  48. Kang, N. Mechanotransduction in liver diseases. Semin. Liver Dis. 40, 84–90 (2020).

    Article  Google Scholar 

  49. Duan, J. L. et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68, 677–690 (2018).

    Article  Google Scholar 

  50. Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    Article  Google Scholar 

  51. Dorland, Y. L. & Huveneers, S. Cell–cell junctional mechanotransduction in endothelial remodeling. Cell Mol. Life Sci. 74, 279–292 (2017).

    Article  Google Scholar 

  52. Weinbaum, S., Duan, Y., Satlin, L. M., Wang, T. & Weinstein, A. M. Mechanotransduction in the renal tubule. Am. J. Physiol. Ren. Physiol. 299, F1220–1236, (2010).

    Article  Google Scholar 

  53. Spasic, M. & Jacobs, C. R. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin. Cell Dev. Biol. 71, 42–52 (2017).

    Article  Google Scholar 

  54. Chapin, H. C. & Caplan, M. J. The cell biology of polycystic kidney disease. J. Cell Biol. 191, 701–710 (2010).

    Article  Google Scholar 

  55. Peyronnet, R. et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 14, 1143–1148 (2013).

    Article  Google Scholar 

  56. Lee, K. L. et al. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 4, 7 (2015).

    Article  Google Scholar 

  57. Silver, F. H., Siperko, L. M. & Seehra, G. P. Mechanobiology of force transduction in dermal tissue. Skin. Res. Technol. 9, 3–23 (2003).

    Article  Google Scholar 

  58. Lumpkin, E. A. & Caterina, M. J. Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007).

    Article  Google Scholar 

  59. Lee, J. et al. Increased primary cilia in idiopathic pulmonary fibrosis. Mol. Cell 41, 224–233 (2018).

    Google Scholar 

  60. Villalobos, E. et al. Fibroblast primary cilia are required for cardiac fibrosis. Circulation 139, 2342–2357 (2019).

    Article  Google Scholar 

  61. Shinde, A. V., Humeres, C. & Frangogiannis, N. G. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 298–309 (2017).

    Article  Google Scholar 

  62. Wei, W. et al. Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure. J. Cell Physiol. 233, 4981–4989 (2018).

    Article  Google Scholar 

  63. Russo, I. et al. Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through smad-dependent activation of a matrix-preserving program. Circ. Res. 124, 1214–1227 (2019).

    Article  Google Scholar 

  64. Tanaka, R. et al. Hydrostatic pressure suppresses fibrotic changes via Akt/GSK-3 signaling in human cardiac fibroblasts. Physiol. Rep. 6, e13687 (2018).

    Article  Google Scholar 

  65. Okuda, K., Shaffer, K. M. & Ehre, C. Mucins and CFTR: their close relationship. Int. J. Mol. Sci. 23, 10232 (2022).

    Article  Google Scholar 

  66. Requena, S. et al. Imaging viscosity of intragranular mucin matrix in cystic fibrosis cells. Sci. Rep. 7, 16761 (2017).

    Article  Google Scholar 

  67. Gonzalez-Molina, J. et al. Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration. Biomaterials 177, 113–124 (2018).

    Article  Google Scholar 

  68. Brocker, C., Thompson, D. C. & Vasiliou, V. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 3, 345–364 (2012).

    Article  Google Scholar 

  69. Miyano, T., Suzuki, A. & Sakamoto, N. Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells. PLoS ONE 16, e0261345 (2021).

    Article  Google Scholar 

  70. Narayanan, V. et al. Osmotic gradients in epithelial acini increase mechanical tension across E-cadherin, drive morphogenesis, and maintain homeostasis. Curr. Biol. 30, 624–633 (2020).

    Article  Google Scholar 

  71. Mierke, C. T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep. Prog. Phys. 82, 064602 (2019).

    Article  Google Scholar 

  72. Moriarty, R. A. & Stroka, K. M. Physical confinement alters sarcoma cell cycle progression and division. Cell Cycle 17, 2360–2373 (2018).

    Article  Google Scholar 

  73. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  Google Scholar 

  74. Bouzid, T. et al. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J. Biol. Eng. 13, 68 (2019).

    Article  Google Scholar 

  75. Herum, K. M., Choppe, J., Kumar, A., Engler, A. J. & McCulloch, A. D. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol. Biol. Cell 28, 1871–1882 (2017).

    Article  Google Scholar 

  76. Ferrari, S. & Pesce, M. Cell-based mechanosensation, epigenetics, and non-coding RNAs in progression of cardiac fibrosis. Int. J. Mol. Sci. 21, 28 (2019).

    Article  Google Scholar 

  77. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  Google Scholar 

  78. Lyu, X., Hu, M., Peng, J., Zhang, X. & Sanders, Y. Y. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther. Adv. Chronic Dis. 10, 2040622319862697 (2019).

    Article  Google Scholar 

  79. Alam, S. G. et al. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Sci. Rep. 6, 38063 (2016).

    Article  Google Scholar 

  80. Stewart, R. M., Rodriguez, E. C. & King, M. C. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis. Mol. Biol. Cell 30, 1664–1675 (2019).

    Article  Google Scholar 

  81. Armstrong, J. P. K. et al. A blueprint for translational regenerative medicine. Sci. Transl. Med. 12, eaaz2253 (2020).

    Article  Google Scholar 

  82. Seyhan, A. A. Lost in translation: the valley of death across preclinical and clinical divide — identification of problems and overcoming obstacles. Transl. Med. Commun. https://doi.org/10.1186/s41231-019-0050-7 (2019).

  83. Mascharak, S. et al. Modulating cellular responses to mechanical forces to promote wound regeneration. Adv. Wound Care 11, 479–495 (2022).

    Article  Google Scholar 

  84. Friedman, S. L., Sheppard, D., Duffield, J. S. & Violette, S. Therapy for fibrotic diseases: nearing the starting line. Sci. Transl. Med. 5, 167sr161 (2013).

    Article  Google Scholar 

  85. Han, J. J. F. D. A. Modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 47, 449–450 (2023).

    Article  Google Scholar 

  86. Swaters, D., van Veen, A., van Meurs, W., Turner, J. E. & Ritskes-Hoitinga, M. A history of regulatory animal testing: what can we learn? Altern. Lab. Anim. 50, 322–329 (2022).

    Article  Google Scholar 

  87. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018).

    Article  Google Scholar 

  88. Cox, C. D., Bavi, N. & Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 29, 1–12 (2019).

    Article  Google Scholar 

  89. Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635 (2014).

    Article  Google Scholar 

  90. Seo, B. R. et al. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc. Natl Acad. Sci. USA 117, 11387–11398 (2020).

    Article  Google Scholar 

  91. Doyle, A. D., Carvajal, N., Jin, A., Matsumoto, K. & Yamada, K. M. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6, 8720 (2015).

    Article  Google Scholar 

  92. Shellard, A. & Mayor, R. Durotaxis: the hard path from in vitro to in vivo. Dev. Cell 56, 227–239 (2021).

    Article  Google Scholar 

  93. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A. & Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem. Int. Ed. Engl. 56, 12132–12136 (2017).

    Article  Google Scholar 

  94. Caliari, S. R. et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci. Rep. 6, 21387 (2016).

    Article  Google Scholar 

  95. Liu, L. et al. Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion. Proc. Natl Acad. Sci. USA 117, 10832–10838 (2020).

    Article  Google Scholar 

  96. Long, Y., Niu, Y., Liang, K. & Du, Y. Mechanical communication in fibrosis progression. Trends Cell Biol. 32, 70–90 (2022).

    Article  Google Scholar 

  97. Liu, L., He, F., Yu, Y. & Wang, Y. Application of FRET biosensors in mechanobiology and mechanopharmacological screening. Front. Bioeng. Biotechnol. 8, 595497 (2020).

    Article  Google Scholar 

  98. Kim, T. J. et al. Dynamic visualization of alpha-catenin reveals rapid, reversible conformation switching between tension states. Curr. Biol. 25, 218–224 (2015).

    Article  Google Scholar 

  99. Borghi, N. et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc. Natl Acad. Sci. USA 109, 12568–12573 (2012).

    Article  Google Scholar 

  100. Pothapragada, S. P., Gupta, P., Mukherjee, S. & Das, T. Matrix mechanics regulates epithelial defence against cancer by tuning dynamic localization of filamin. Nat. Commun. 13, 218 (2022).

    Article  Google Scholar 

  101. Baddam, S. R. et al. The desmosomal cadherin desmoglein-2 experiences mechanical tension as demonstrated by a FRET-based tension biosensor expressed in living cells. Cells 7, 66 (2018).

    Article  Google Scholar 

  102. Krusche, C. A. et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res. Cardiol. 106, 617–633 (2011).

    Article  Google Scholar 

  103. Sancho, A., Vandersmissen, I., Craps, S., Luttun, A. & Groll, J. A new strategy to measure intercellular adhesion forces in mature cell–cell contacts. Sci. Rep. 7, 46152 (2017).

    Article  Google Scholar 

  104. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    Article  Google Scholar 

  105. Bugaj, L. J., Choksi, A. T., Mesuda, C. K., Kane, R. S. & Schaffer, D. V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249–252 (2013).

    Article  Google Scholar 

  106. Ollech, D. et al. An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells. Nat. Commun. 11, 472 (2020).

    Article  Google Scholar 

  107. Norona, L. M., Nguyen, D. G., Gerber, D. A., Presnell, S. C. & LeCluyse, E. L. Editor’s highlight: Modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues. Toxicol. Sci. 154, 354–367 (2016).

    Article  Google Scholar 

  108. Daly, A. C., Davidson, M. D. & Burdick, J. A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 12, 753 (2021).

    Article  Google Scholar 

  109. Kanabekova, P., Kadyrova, A. & Kulsharova, G. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines 13, 428 (2022).

    Article  Google Scholar 

  110. Sarkar, U. et al. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug. Metab. Dispos. 43, 1091–1099 (2015).

    Article  Google Scholar 

  111. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  Google Scholar 

  112. Li, W. et al. Matrix stiffness and shear stresses modulate hepatocyte functions in a fibrotic liver sinusoidal model. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G272–G282 (2021).

    Article  Google Scholar 

  113. Ford, A. J., Jain, G. & Rajagopalan, P. Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function. Acta Biomater. 24, 220–227 (2015).

    Article  Google Scholar 

  114. Friedrich, C., Endlich, N., Kriz, W. & Endlich, K. Podocytes are sensitive to fluid shear stress in vitro. Am. J. Physiol. Ren. Physiol. 291, F856–865, (2006).

    Article  Google Scholar 

  115. Maggiorani, D. et al. Shear stress-induced alteration of epithelial organization in human renal tubular cells. PLoS ONE 10, e0131416 (2015).

    Article  Google Scholar 

  116. Miravete, M. et al. Renal tubular fluid shear stress promotes endothelial cell activation. Biochem. Biophys. Res. Commun. 407, 813–817 (2011).

    Article  Google Scholar 

  117. Zhou, M. et al. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci. Rep. 6, 31771 (2016).

    Article  Google Scholar 

  118. Mastikhina, O. et al. Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials 233, 119741 (2020).

    Article  Google Scholar 

  119. Sundarakrishnan, A. et al. Bioengineered in vitro tissue model of fibroblast activation for modeling pulmonary fibrosis. ACS Biomater. Sci. Eng. 5, 2417–2429 (2019).

    Article  Google Scholar 

  120. Guenat, O. T. & Berthiaume, F. Incorporating mechanical strain in organs-on-a-chip: lung and skin. Biomicrofluidics 12, 042207 (2018).

    Article  Google Scholar 

  121. Sala, F. et al. High-throughput 3D imaging of single cells with light-sheet fluorescence microscopy on chip. Biomed. Opt. Express 11, 4397–4407, (2020).

    Article  Google Scholar 

  122. Wijesekara, P. et al. Engineering rotating apical-out airway organoid for assessing respiratory cilia motility. iScience 25, 104730 (2022).

    Article  Google Scholar 

  123. Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

    Article  Google Scholar 

  124. Anno, T., Sakamoto, N. & Sato, M. Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions. Biochem. Biophys. Res. Commun. 424, 94–99 (2012).

    Article  Google Scholar 

  125. Sakamoto, N., Ogawa, M., Sadamoto, K., Takeuchi, M. & Kataoka, N. Mechanical role of nesprin-1-mediated nucleus-actin filament binding in cyclic stretch-induced fibroblast elongation. Cell Mol. Bioeng. 10, 327–338 (2017).

    Article  Google Scholar 

  126. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381 (2014).

    Article  Google Scholar 

  127. Richeldi, L. & du Bois, R. M. Pirfenidone in idiopathic pulmonary fibrosis: the CAPACITY program. Expert. Rev. Respir. Med. 5, 473–481 (2011).

    Article  Google Scholar 

  128. Soare, A. et al. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis Rheumatol. 72, 137–149 (2020).

    Article  Google Scholar 

  129. Vorstandlechner, V. et al. The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation. Nat. Commun. 12, 6242 (2021).

    Article  Google Scholar 

  130. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    Article  Google Scholar 

  131. Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  Google Scholar 

  132. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  Google Scholar 

  133. Chen, K. et al. Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat. Commun. 12, 5256 (2021).

    Article  Google Scholar 

  134. Garoffolo, G. et al. Reduction of cardiac fibrosis by interference with YAP-dependent transactivation. Circulation Res. 131, 239–257 (2022).

    Article  Google Scholar 

  135. Peng, X. et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J. Clin. Invest. 116, 217–227 (2006).

    Article  Google Scholar 

  136. Fan, G. P. et al. Pharmacological inhibition of focal adhesion kinase attenuates cardiac fibrosis in mice cardiac fibroblast and post-myocardial-infarction models. Cell Physiol. Biochem. 37, 515–526 (2015).

    Article  Google Scholar 

  137. Haak, A. J. et al. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci. Transl. Med. 11, eaau6296 (2019).

    Article  Google Scholar 

  138. Guo, J. L. & Longaker, M. T. Bioprinted hydrogels for fibrosis and wound healing: treatment and modeling. Gels https://doi.org/10.3390/gels9010019 (2022).

  139. Sun, G. et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl Acad. Sci. USA 108, 20976–20981 (2011).

    Article  Google Scholar 

  140. Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T. & Segura, T. Injectable and spatially patterned microporous annealed particle (MAP) hydrogels for tissue repair applications. Adv. Sci. 5, 1801046 (2018).

    Article  Google Scholar 

  141. Blackburn, N. J. et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials 39, 182–192 (2015).

    Article  Google Scholar 

  142. RI, R. I. et al. 3D-printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration. Polymers 13, 2510 (2021).

    Article  Google Scholar 

  143. Chen, L. et al. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact. Mater. 10, 236–246 (2022).

    Google Scholar 

  144. Najar-Asl, M. et al. Transplantation of SDF-1α-loaded liver extracellular matrix repopulated with autologous cells attenuated liver fibrosis in a rat model. EXCLI J. 21, 704 (2022).

    Google Scholar 

  145. Guan, G. et al. Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart. Bioact. Mater. 6, 4415–4429 (2021).

    Google Scholar 

  146. Davidson, M. D., Burdick, J. A. & Wells, R. G. Engineered biomaterial platforms to study fibrosis. Adv. Healthc. Mater. 9, 1901682 (2020).

    Article  Google Scholar 

  147. Guo, J. L. et al. Three-dimensional printing of click functionalized, peptide patterned scaffolds for osteochondral tissue engineering. Bioprinting 22, e00136 (2021).

    Article  Google Scholar 

  148. Nabai, L., Ghahary, A. & Jackson, J. Localized controlled release of kynurenic acid encapsulated in synthetic polymer reduces implant-induced dermal fibrosis. Pharmaceutics 14, 1546 (2022).

    Article  Google Scholar 

  149. Mihalko, E., Huang, K., Sproul, E., Cheng, K. & Brown, A. C. Targeted treatment of ischemic and fibrotic complications of myocardial infarction using a dual-delivery microgel therapeutic. ACS Nano 12, 7826–7837 (2018).

    Article  Google Scholar 

  150. Francisco, J. et al. Suppression of myeloid YAP antagonizes adverse cardiac remodeling during pressure overload stress. J. Mol. Cell Cardiol. 181, 1–14 (2023).

    Article  Google Scholar 

  151. Xu, W. et al. PCL scaffold combined with rat tail collagen type I to reduce keratocyte differentiation and prevent corneal stroma fibrosis after injury. Exp. Eye Res. 217, 108936 (2022).

    Article  Google Scholar 

  152. Horejs, C. M. et al. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information. Nat. Commun. 8, 15509 (2017).

    Article  Google Scholar 

  153. Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).

    Article  Google Scholar 

  154. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    Article  Google Scholar 

  155. Nih, L. R., Sideris, E., Carmichael, S. T. & Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. https://doi.org/10.1002/adma.201606471 (2017).

  156. Jiao, Y. et al. Constructing nanoscale topology on the surface of microfibers inhibits fibroblast fibrosis. Adv. Fiber Mater. 4, 1219–1232 (2022).

    Article  Google Scholar 

  157. Sisco, P. N. et al. The effect of gold nanorods on cell-mediated collagen remodeling. Nano Lett. 8, 3409–3412 (2008).

    Article  Google Scholar 

  158. Kim, H. et al. Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction. Am. J. Respir. Cell Mol. Biol. 28, 111–121 (2003).

    Article  Google Scholar 

  159. Riley, L. A. & Merryman, W. D. Cadherin-11 and cardiac fibrosis: a common target for a common pathology. Cell Signal. 78, 109876 (2021).

    Article  Google Scholar 

  160. Trujillo, J. et al. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food Funct. 7, 279–293 (2016).

    Article  Google Scholar 

  161. Schneider, D. J. et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-beta production and epithelial to mesenchymal transition. FASEB J. 26, 503–512 (2012).

    Article  Google Scholar 

  162. Finch, R. et al. Results of a phase 2 study of RG6125, an anti-cadherin-11 monoclonal antibody, in rheumatoid arthritis patients with an inadequate response to anti-TNFa therapy. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-eular.3028 (2019).

  163. Beaven, E., Kumar, R., Bhatt, H. N., Esquivel, S. V. & Nurunnabi, M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem. Commun. 58, 13556–13571 (2022).

    Article  Google Scholar 

  164. Masszi, A. et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am. J. Pathol. 165, 1955–1967 (2004).

    Article  Google Scholar 

  165. Zhang, J. et al. Adenosine A(2a) receptor blockade diminishes Wnt/beta-catenin signaling in a murine model of bleomycin-induced dermal fibrosis. Am. J. Pathol. 187, 1935–1944 (2017).

    Article  Google Scholar 

  166. Tian, Y. et al. A2aR inhibits fibrosis and the EMT process in silicosis by regulating Wnt/beta-catenin pathway. Ecotoxicol. Env. Saf. 249, 114410 (2023).

    Article  Google Scholar 

  167. AlQudah, M., Hale, T. M. & Czubryt, M. P. Targeting the renin–angiotensin–aldosterone system in fibrosis. Matrix Biol. 91-92, 92–108 (2020).

    Article  Google Scholar 

  168. Ribeiro, M. O., Antunes, E., Muscara, M. N., De Nucci, G. & Zatz, R. Nifedipine prevents renal injury in rats with chronic nitric oxide inhibition. Hypertension 26, 150–155 (1995).

    Article  Google Scholar 

  169. Seccia, T. M. et al. Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis. J. Hypertens. 26, 2022–2029 (2008).

    Article  Google Scholar 

  170. Lin, Y. C. et al. Nifedipine exacerbates lipogenesis in the kidney via KIM-1, CD36, and SREBP upregulation: implications from an animal model for human study. Int. J. Mol. Sci. 21, 4359 (2020).

    Article  Google Scholar 

  171. Numaga-Tomita, T. et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Sci. Rep. 6, 39383 (2016).

    Article  Google Scholar 

  172. Connett, G. J. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. Drug. Des. Devel. Ther. 13, 2405–2412 (2019).

    Article  Google Scholar 

  173. Yan, P., Ke, B. & Fang, X. Ion channels as a therapeutic target for renal fibrosis. Front. Physiol. 13, 1019028 (2022).

    Article  Google Scholar 

  174. Fan, D. et al. Deciphering the anti-renal fibrosis mechanism of triptolide in diabetic nephropathy by the integrative approach of network pharmacology and experimental verification. J. Ethnopharmacol. 316, 116774 (2023).

    Article  Google Scholar 

  175. Raziyeva, K., Kim, Y., Zharkinbekov, Z., Temirkhanova, K. & Saparov, A. Novel therapies for the treatment of cardiac fibrosis following myocardial infarction. Biomedicines https://doi.org/10.3390/biomedicines10092178 (2022).

  176. Wang, Y. et al. Inhibition of histone deacetylases prevents cardiac remodeling after myocardial infarction by restoring autophagosome processing in cardiac fibroblasts. Cell Physiol. Biochem. 49, 1999–2011 (2018).

    Article  Google Scholar 

  177. Barbosa, D. M. et al. Rhein, a novel histone deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Sci. Rep. 10, 4888 (2020).

    Article  Google Scholar 

  178. Park, K. C. et al. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br. J. Pharmacol. 171, 4820–4830 (2014).

    Article  Google Scholar 

  179. Xiong, C. et al. Selective inhibition of class IIa histone deacetylases alleviates renal fibrosis. FASEB J. 33, 8249–8262 (2019).

    Article  Google Scholar 

  180. Wen, D. et al. Focusing on mechanoregulation axis in fibrosis: sensing, transduction and effecting. Front. Mol. Biosci. 9, 804680 (2022).

    Article  Google Scholar 

  181. Saito, S. et al. HDAC8 inhibition ameliorates pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L175–L186 (2019).

    Article  Google Scholar 

  182. Chai, R. J. et al. Disrupting the LINC complex by AAV mediated gene transduction prevents progression of Lamin induced cardiomyopathy. Nat. Commun. 12, 4722 (2021).

    Article  Google Scholar 

  183. Chen, X. et al. Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis. 9, 1021 (2018).

    Article  Google Scholar 

  184. Bingham, G. C., Lee, F., Naba, A. & Barker, T. H. Spatial-omics: novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 91–92, 152–166 (2020).

    Article  Google Scholar 

  185. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e915 (2018).

    Article  Google Scholar 

  186. Eyres, M. et al. Spatially resolved deconvolution of the fibrotic niche in lung fibrosis. Cell Rep. 40, 111230 (2022).

    Article  Google Scholar 

  187. Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11, 3559 (2020).

    Article  Google Scholar 

  188. Wallis, T. J. M. et al. Temporal progression of mediastinal lymphadenopathy in idiopathic pulmonary fibrosis. Eur. Respir. J. 59, 2200024 (2022).

    Article  Google Scholar 

  189. Foster, D. S. et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 40, 1392–1406 (2022).

    Article  Google Scholar 

  190. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  Google Scholar 

  191. Foster, D. S. et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc. Natl Acad. Sci. USA 118, e2110025118 (2021).

    Article  Google Scholar 

  192. Huang, K. Y. & Petretto, E. Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 321, L491–L506 (2021).

    Article  Google Scholar 

  193. Fanidis, D., Moulos, P. & Aidinis, V. Fibromine is a multi-omics database and mining tool for target discovery in pulmonary fibrosis. Sci. Rep. 11, 21712 (2021).

    Article  Google Scholar 

  194. Wu, Q. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. OnLine 19, 9 (2020).

    Article  Google Scholar 

  195. Hayward, K. L., Kouthouridis, S. & Zhang, B. Organ-on-a-chip systems for modeling pathological tissue morphogenesis associated with fibrosis and cancer. ACS Biomater. Sci. Eng. 7, 2900–2925 (2021).

    Article  Google Scholar 

  196. Bittner, S. M., Guo, J. L. & Mikos, A. G. Spatiotemporal control of growth factors in three-dimensional printed scaffolds. Bioprinting 12, e00032 (2018).

    Article  Google Scholar 

  197. Matera, D. L. et al. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 6, eabb5069 (2020).

    Article  Google Scholar 

  198. Pakulska, M. M. et al. Encapsulation-free controlled release: electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Sci. Adv. 2, e1600519 (2016).

    Article  Google Scholar 

  199. Kumari, J., Wagener, F. & Kouwer, P. H. J. Novel synthetic polymer-based 3D contraction assay: a versatile preclinical research platform for fibrosis. ACS Appl. Mater. Interfaces 14, 19212–19225 (2022).

    Article  Google Scholar 

  200. Saleh, K. S. et al. Engineering hybrid-hydrogels comprised of healthy or diseased decellularized extracellular matrix to study pulmonary fibrosis. Cell Mol. Bioeng. 15, 505–519 (2022).

    Article  Google Scholar 

  201. Ma, H., Caldwell, A. S., Azagarsamy, M. A., Gonzalez Rodriguez, A. & Anseth, K. S. Bioorthogonal click chemistries enable simultaneous spatial patterning of multiple proteins to probe synergistic protein effects on fibroblast function. Biomaterials 255, 120205 (2020).

    Article  Google Scholar 

  202. Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147–1154, (2007).

    Article  Google Scholar 

  203. Jones, M. G. et al. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. eLife 7, e36354 (2018).

    Article  Google Scholar 

  204. Helm, M. et al. Repurposing DPP4 inhibition to improve hair follicle activation and regeneration. J. Invest. Dermatol. 143, 2132–2144 (2023).

    Article  Google Scholar 

  205. Ba, Y. D., Sun, J. H. & Zhao, X. X. Evogliptin attenuates bleomycin-induced lung fibrosis via inhibiting TGF-beta/Smad signaling in fibroblast. Eur. Rev. Med. Pharmacol. Sci. 24, 10790–10798 (2020).

    Google Scholar 

  206. Kanasaki, K. et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63, 2120–2131 (2014).

    Article  Google Scholar 

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01963845 (2016).

  208. Chen, K. et al. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci. Transl. Med. 14, eabj9152 (2022).

    Article  Google Scholar 

  209. Zhao, X. K. et al. Focal adhesion kinase regulates hepatic stellate cell activation and liver fibrosis. Sci. Rep. 7, 4032 (2017).

    Article  Google Scholar 

  210. Lagares, D. et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum. 64, 1653–1664 (2012).

    Article  Google Scholar 

  211. Jiang, C. et al. Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int. J. Mol. Sci. 13, 8293–8307 (2012).

    Article  Google Scholar 

  212. Knipe, R. S., Tager, A. M. & Liao, J. K. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol. Rev. 67, 103–117 (2015).

    Article  Google Scholar 

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05832229 (2023).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04971577 (2023).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00255242 (2009).

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04385433 (2023).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01268202 (2019).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01730339 (2016).

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01037985 (2021).

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01890265 (2020).

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04419558 (2023).

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01217632 (2016).

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01759511 (2017).

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01769196 (2017).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01672879 (2019).

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01672866 (2019).

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01707472 (2019).

  228. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03949530 (2020).

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04396756 (2023).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02612051 (2017).

  231. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01371305 (2020).

  232. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00878761 (2020).

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00063869 (2009).

  234. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02453256 (2020).

  235. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04988022 (2023).

  236. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05128383 (2023).

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00987545 (2020).

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01629667 (2017).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01872689 (2018).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00786201 (2018).

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02550873 (2022).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01981850 (2022).

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02305602 (2022).

  244. Hussein, K. H., Park, K. M., Yu, L., Kwak, H. H. & Woo, H. M. Decellularized hepatic extracellular matrix hydrogel attenuates hepatic stellate cell activation and liver fibrosis. Mater. Sci. Eng. C 116, 111160 (2020).

    Article  Google Scholar 

  245. Chen, K. et al. Pullulan-collagen hydrogel wound dressing promotes dermal remodelling and wound healing compared to commercially available collagen dressings. Wound Repair. Regen. 30, 397–408 (2022).

    Article  Google Scholar 

  246. Purcell, B. P. et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13, 653–661 (2014).

    Article  Google Scholar 

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00958425 (2016).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02166554 (2014).

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05360186 (2023).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01226563 (2023).

  251. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01311791 (2017).

  252. Landen, N. X., Li, D. & Stahle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol. Life Sci. 73, 3861–3885 (2016).

    Article  Google Scholar 

  253. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  Google Scholar 

  254. Levenson, S. M. et al. The healing of rat skin wounds. Ann. Surg. 161, 293–308 (1965).

    Article  Google Scholar 

  255. Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009).

    Article  Google Scholar 

  256. Wilder, J. & Patel, K. The clinical utility of FibroScan((R)) as a noninvasive diagnostic test for liver disease. Med. Devices 7, 107–114, (2014).

    Google Scholar 

  257. Asilian Bidgoli, A., Rahnamayan, S., Dehkharghanian, T., Grami, A. & Tizhoosh, H. R. Bias reduction in representation of histopathology images using deep feature selection. Sci. Rep. 12, 19994 (2022).

    Article  Google Scholar 

  258. Yu, Y. et al. Deep learning enables automated scoring of liver fibrosis stages. Sci. Rep. 8, 16016 (2018).

    Article  Google Scholar 

  259. Guo, J. L., Januszyk, M. & Longaker, M. T. Machine learning in tissue engineering. Tissue Eng. Part A 29, 2–19 (2023).

    Article  Google Scholar 

  260. Sinha, S. et al. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 185, 4717–4736 (2022).

    Article  Google Scholar 

  261. Cherry, C. et al. Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics. Nat. Biomed. Eng. 5, 1228–1238 (2021).

    Article  Google Scholar 

  262. Liu, Y., Bai, F., Tang, Z., Liu, N. & Liu, Q. Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease. BMC Cardiovasc. Disord. 21, 52 (2021).

    Article  Google Scholar 

  263. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  Google Scholar 

  264. Charras, G. & Yap, A. S. Tensile forces and mechanotransduction at cell–cell junctions. Curr. Biol. 28, R445–R457 (2018).

    Article  Google Scholar 

  265. Paluch, E. K. et al. Mechanotransduction: use the force(s). BMC Biol. 13, 47 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01-DE032677, NIH R01-AR081343, NIH F32-HL167318, NIH R01-GM136659, NIH U24-DE029463, NIH R01-DE027346, the Wu Tsai Human Performance Alliance, the Hagey Laboratory for Pediatric Regenerative Medicine, the Gunn Olivier Fund, the Scleroderma Research Foundation, and the Pitch and Catherine Johnson Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Derrick C. Wan or Michael T. Longaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Sara Lovisa, Mark Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascharak, S., L. Guo, J., Griffin, M. et al. Modelling and targeting mechanical forces in organ fibrosis. Nat Rev Bioeng 2, 305–323 (2024). https://doi.org/10.1038/s44222-023-00144-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00144-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research