Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling host–microbiome interactions in organ-on-a-chip platforms

Abstract

The human microbiome orchestrates a variety of metabolic, immunological and regulatory functions in health and disease. However, experimentally dissecting host–microbiome interactions remains challenging. In this Review, we discuss how human organ-on-a-chip platforms can be designed to study fundamental microbiome mechanisms, investigate microbiome-related disease pathophysiology and provide preclinical drug screening platforms, as an alternative to conventional cell cultures or animal models. We outline key design parameters, including spatial configurations, microfluidic setups, mechanical deformation and oxygen gradients, that allow the longitudinal co-culture of aerobic and anaerobic microorganisms with human cells. Such organ-on-a-chip platforms have been explored for the preclinical modelling of microbiome-associated diseases, including infectious and reproductive organ diseases. Moreover, organ-on-a-chip platforms can be engineered to test microbiome-assisted therapeutics, for pharmacomicrobiomics and culturomics investigations, and to model microbiome-mediated multi-organ interactions. Finally, we provide a translational outlook, discussing clinical challenges, regulatory hurdles and precision interventions.

Key points

  • Human organ-on-a-chip platforms allow the investigation of host–microbiome interactions in vitro under controlled physiological and biomechanical dynamics.

  • Organ-on-a-chip models can be designed to recapitulate inter-kingdom crosstalk for preclinical disease modelling and validation of therapeutic interventions.

  • Patient-derived samples, including microbiome and cell samples, can be integrated in organ-on-a-chip platforms to model patient-specific disease milieus, reflecting the genetic and phenotypic parameters of a specific patient.

  • Human organ-on-a-chip platforms can be applied to study human-relevant drug metabolism, bioavailability and toxicity, and to investigate microbiome-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelling human host–microbiome interactions.
Fig. 2: Gut-on-a-chip platform.
Fig. 3: Translational framework for patient-on-a-chip models.

Similar content being viewed by others

References

  1. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10, e1001424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).

    PubMed  Google Scholar 

  6. Doestzada, M. et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell 9, 432–445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chou, D. B. et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell. Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Waclawiková, B., Codutti, A., Alim, K. & El Aidy, S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 14, 1997296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pan, R. et al. Crosstalk between the gut microbiome and colonic motility in chronic constipation: potential mechanisms and microbiota modulation. Nutrients 14, 3704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  17. Haiser, H. J., Seim, K. L., Balskus, E. P. & Turnbaugh, P. J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233–238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Powell, N., Walker, M. M. & Talley, N. J. The mucosal immune system: master regulator of bidirectional gut–brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerbaba, T. K., Green-Harrison, L. & Buret, A. G. Modeling host-microbiome interactions in Caenorhabditis elegans. J. Nematol. 49, 348–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia, P. P. et al. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: a special reference to zebrafish. Environ. Pollut. 279, 116925 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host–microbiota interactions in animal models and humans. Genes Dev. 27, 701–718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inoue, R. & Ushida, K. Development of the intestinal microbiota in rats and its possible interactions with the evolution of the luminal IgA in the intestine. FEMS Microbiol. Ecol. 45, 147–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hildebrand, F. et al. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens). BMC Genomics 13, 514 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patil, Y., Gooneratne, R. & Ju, X. H. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes 11, 310–334 (2020).

    Article  PubMed  Google Scholar 

  28. Legrand, T., Wynne, J. W., Weyrich, L. S. & Oxley, A. P. A. Investigating both mucosal immunity and microbiota in response to gut enteritis in yellowtail kingfish. Microorganisms 8, 1267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Slinger, J., Adams, M. B. & Wynne, J. W. Bacteriomic profiling of branchial lesions induced by Neoparamoeba perurans challenge reveals commensal dysbiosis and an association with Tenacibaculum dicentrarchi in AGD-affected Atlantic salmon (Salmo salar L.). Microorganisms 8, 1189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, J. J., Young, C. D., Zhou, H. M. & Wang, X. J. Mouse models for studying oral cancer: impact in the era of cancer immunotherapy. J. Dent. Res. 97, 683–690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Catalone, B. J. et al. Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides. Antimicrob. Agents Chemother. 48, 1837–1847 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Avci, P. et al. Animal models of skin disease for drug discovery. Expert Opin. Drug Discov. 8, 331–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin, H. et al. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota. Aging 14, 1941–1958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye, W. & Chen, Q. Potential applications and perspectives of humanized mouse models. Annu. Rev. Anim. Biosci. 10, 395–417 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Uzbay, T. Germ-free animal experiments in the gut microbiota studies. Curr. Opin. Pharmacol. 49, 6–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Staley, C. et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome 5, 87 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fiebiger, U., Bereswill, S. & Heimesaat, M. M. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur. J. Microbiol. Immunol. 6, 253–271 (2016).

    Article  CAS  Google Scholar 

  38. Bhattarai, Y. & Kashyap, P. C. Germ-free mice model for studying host-microbial interactions. Methods Mol. Biol. 1438, 123–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Fontaine, C. A. et al. How free of germs is germ-free? Detection of bacterial contamination in a germ free mouse unit. Gut Microbes 6, 225–233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–1148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mondragón-Palomino, O. et al. Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proc. Natl Acad. Sci. USA 119, e2118483119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hughes, D. L., Hughes, A., Soonawalla, Z., Mukherjee, S. & O’Neill, E. Dynamic physiological culture of ex vivo human tissue: a systematic review. Cancers 13, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J. et al. Coculture of primary human colon monolayer with human gut bacteria. Nat. Protoc. 16, 3874–3900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Günther, C., Winner, B., Neurath, M. F. & Stappenbeck, T. S. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 71, 1892–1908 (2022).

    Article  PubMed  Google Scholar 

  46. Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Poletti, M., Arnauts, K., Ferrante, M. & Korcsmaros, T. Organoid-based models to study the role of host-microbiota interactions in IBD. J. Crohns Colitis 15, 1222–1235 (2021).

    Article  PubMed  Google Scholar 

  48. Hill, D. R. et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 6, e29132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. King, S. M. et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front. Physiol. 8, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Costello, C. M. et al. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11, 2030–2039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dos Santos, J. F. et al. Mesenchymal stem cells express epidermal markers in an in vitro reconstructed human skin model. Front. Cell Dev. Biol. 10, 1012637 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim, R., Wang, Y., Sims, C. E. & Allbritton, N. L. A platform for co-culture of primary human colonic epithelium with anaerobic probiotic bacteria. Front. Bioeng. Biotechnol. 10, 890396 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen, Y. et al. Bioengineered 3D tissue model of intestine epithelium with oxygen gradients to sustain human gut microbiome. Adv. Healthc. Mater. 11, e2200447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    ADS  CAS  PubMed  Google Scholar 

  55. Shin, W. & Kim, H. J. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat. Protoc. 17, 910–939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shin, Y. C. et al. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip. Micromachines 11, 663 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Waheed, S. et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip 16, 1993–2013 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Walsh, D. I., Kong, D. S., Murthy, S. K. & Carr, P. A. Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol. 35, 383–392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    Article  CAS  Google Scholar 

  61. Sunuwar, L. et al. Mechanical stimuli affect Escherichia coli heat-stable enterotoxin-cyclic GMP signaling in a human enteroid intestine-chip model. Infect. Immun. 88, e00866–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin, W., Hinojosa, C. D., Ingber, D. E. & Kim, H. J. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience 15, 391–406 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maurer, M. et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220, 119396 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Shin, W., Su, Z., Yi, S. S. & Kim, H. J. Single-cell transcriptomic mapping of intestinal epithelium that undergoes 3D morphogenesis and mechanodynamic stimulation in a gut-on-a-chip. iScience 25, 105521 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Min, S. et al. Live probiotic bacteria administered in a pathomimetic Leaky Gut Chip ameliorate impaired epithelial barrier and mucosal inflammation. Sci. Rep. 12, 22641 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shin, W. et al. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 7, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shuler, M. L., Kargi, F. & DeLisa, M. Bioprocess Engineering: Basic Concepts 3rd edn (Pearson, 2017).

  68. Lee, K. S., Boccazzi, P., Sinskey, A. J. & Ram, R. J. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab Chip 11, 1730–1739 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Singh, S., Natalini, J. G. & Segal, L. N. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol. 15, 837–845 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Henneberg, S. et al. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat. Commun. 12, 1707 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Houghton, L. A., Lee, A. S., Badri, H., DeVault, K. R. & Smith, J. A. Respiratory disease and the oesophagus: reflux, reflexes and microaspiration. Nat. Rev. Gastroenterol. Hepatol. 13, 445–460 (2016).

    Article  PubMed  Google Scholar 

  72. Legner, M., McMillen, D. R. & Cvitkovitch, D. G. Role of dilution rate and nutrient availability in the formation of microbial biofilms. Front. Microbiol. 10, 916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mahnic, A., Auchtung, J. M., Poklar Ulrih, N., Britton, R. A. & Rupnik, M. Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Sci. Rep. 10, 8358 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gayer, C. P. & Basson, M. D. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21, 1237–1244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zheng, L., Kelly, C. J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C350–C360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article  PubMed  Google Scholar 

  78. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, W., Chow, K.-H., Fleming, E. & Oh, J. Selective colonization ability of human fecal microbes in different mouse gut environments. ISME J. 13, 805–823 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Shin, W. & Kim, H. J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl Acad. Sci. USA 115, E10539–E10547 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grassart, A. et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 26, 435–444 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 7, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Boquet-Pujadas, A. et al. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. Sci. Adv. 8, eabo5767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bein, A. et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip. Front. Pharmacol. 12, 718484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Villenave, R. et al. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS ONE 12, e0169412 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  ADS  PubMed  Google Scholar 

  87. Lanik, W. E. et al. Microfluidic device facilitates in vitro modeling of human neonatal necrotizing enterocolitis-on-a-chip. JCI Insight 8, e146496 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Thacker, V. V. et al. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife 9, e59961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bai, H. et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat. Commun. 13, 1928 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deinhardt-Emmer, S. et al. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 12, 025012 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Plebani, R. et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J. Cyst. Fibros. 21, 606–615 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Si, L. et al. Clinically relevant influenza virus evolution reconstituted in a human lung airway-on-a-chip. Microbiol. Spectr. 9, e0025721 (2021).

    Article  PubMed  Google Scholar 

  93. Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Buzhdygan, T. P. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis. 146, 105131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boghdeh, N. A. et al. Application of a human blood brain barrier organ-on-a-chip model to evaluate small molecule effectiveness against Venezuelan Equine Encephalitis virus. Viruses 14, 2799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, J. et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nat. Biomed. Eng. 5, 830–846 (2021).

    Article  PubMed  Google Scholar 

  97. Kim, J. J. et al. A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip 19, 3094–3103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, S., Jin, L., Zheng, Y. & Zhu, J. Modeling human HSV infection via a vascularized immune-competent skin-on-chip platform. Nat. Commun. 13, 5481 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Srinivasan, A., Uppuluri, P., Lopez-Ribot, J. & Ramasubramanian, A. K. Development of a high-throughput Candida albicans biofilm chip. PLoS ONE 6, e19036 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Deguchi, S. et al. Elucidation of the liver pathophysiology of COVID-19 patients using liver-on-a-chips. PNAS Nexus 2, pgad029 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rahimi, C. et al. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics 12, 054106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sharma, K. et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 10, e66481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mahajan, G. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10, 201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tantengco, O. A. G. et al. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina‐cervix‐decidua‐organ‐on‐a‐chip and feto‐maternal interface‐organ‐on‐a‐chip. FASEB J. 36, e22551 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Zhu, Y. et al. Placental barrier-on-a-chip: modeling placental inflammatory responses to bacterial infection. ACS Biomater. Sci. Eng. 4, 3356–3363 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Goralski, T. D. et al. A novel approach to interrogating the effects of chemical warfare agent exposure using organ-on-a-chip technology and multiomic analysis. PLoS ONE 18, e0280883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gillooly, J. F., Hein, A. & Damiani, R. Nuclear DNA content varies with cell size across human cell types. Cold Spring Harb. Perspect. Biol. 7, a019091 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kidder, B. L., Hu, G. & Zhao, K. ChIP-Seq: technical considerations for obtaining high-quality data. Nat. Immunol. 12, 918–922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Lombardo, J. A., Aliaghaei, M., Nguyen, Q. H., Kessenbrock, K. & Haun, J. B. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nat. Commun. 12, 2858 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kassem, S. et al. Proteomics for low cell numbers: how to optimize the sample preparation workflow for mass spectrometry analysis. J. Proteome Res. 20, 4217–4230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schönberger, K. et al. LC-MS-based targeted metabolomics for FACS-purified rare cells. Anal. Chem. 95, 4325–4334 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhou, W., Dou, M., Timilsina, S. S., Xu, F. & Li, X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab Chip 21, 2658–2683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ferreiro, A. L. et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl Med. 15, eabo2984 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Chu, H., Chan, J. F. & Yuen, K. Y. Animal models in SARS-CoV-2 research. Nat. Methods 19, 392–394 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Hatziioannou, T. & Evans, D. T. Animal models for HIV/AIDS research. Nat. Rev. Microbiol. 10, 852–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Villenave, R. et al. In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc. Natl Acad. Sci. USA 109, 5040–5045 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, Y. et al. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat. Microbiol. 2, 16250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pires De Souza, G. A. et al. Choosing a cellular model to study SARS-CoV-2. Front. Cell. Infect. Microbiol. 12, 1003608 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ho, B. C. et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat. Commun. 5, 3344 (2014).

    Article  ADS  PubMed  Google Scholar 

  122. Riabi, S. et al. Study of Coxsackie B viruses interactions with Coxsackie Adenovirus receptor and decay-accelerating factor using human CaCo-2 cell line. J. Biomed. Sci. 21, 50 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. March, S. et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 10, 2027–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Soorneedi, A. R. & Moore, M. D. Recent developments in norovirus interactions with bacteria. Curr. Opin. Food Sci. 48, 100926 (2022).

    Article  CAS  Google Scholar 

  125. Ettayebi, K. et al. Replication of human noroviruses in stem cell–derived human enteroids. Science 353, 1387–1393 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  126. Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Qian, X., Nguyen, H. N., Jacob, F., Song, H. & Ming, G. L. Using brain organoids to understand Zika virus-induced microcephaly. Development 144, 952–957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thacker, V. V. et al. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep. 22, e52744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, M. et al. Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv. Sci. 8, 2002928 (2021).

    Article  CAS  Google Scholar 

  130. Holdcroft, A. M., Ireland, D. J. & Payne, M. S. The vaginal microbiome in health and disease—what role do common intimate hygiene practices play? Microorganisms 11, 298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fettweis, J. M. et al. The vaginal microbiome and preterm birth. Nat. Med. 25, 1012–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lewis, F. M. T., Bernstein, K. T. & Aral, S. O. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet. Gynecol. 129, 643–654 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Baud, A. et al. Microbial diversity in the vaginal microbiota and its link to pregnancy outcomes. Sci. Rep. 13, 9061 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gnecco, J. S. et al. Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium. Hum. Reprod. 34, 702–714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kaur, H., Merchant, M., Haque, M. M. & Mande, S. S. Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women’s gynecological lifecycle. Front. Microbiol. 11, 551 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gardella, B. et al. The complex interplay between vaginal microbiota, HPV infection, and immunological microenvironment in cervical intraepithelial neoplasia: a literature review. Int. J. Mol. Sci. 23, 7174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, R. et al. Probiotics are a good choice for the treatment of bacterial vaginosis: a meta-analysis of randomized controlled trial. Reprod. Health 19, 137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lev-Sagie, A. et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 25, 1500–1504 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. De Gregorio, V. et al. Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials 286, 121573 (2022).

    Article  PubMed  Google Scholar 

  141. Jeon, M. S. et al. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Nano Converg. 9, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jing, B. et al. Establishment and application of peristaltic human gut-vessel microsystem for studying host-microbial interaction. Front. Bioeng. Biotechnol. 8, 272 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nelson, M. T. et al. Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip. Nat. Commun. 12, 2805 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cubillos-Ruiz, A. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6, 910–921 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Garber, K. Drugging the gut microbiome. Nat. Biotechnol. 33, 228–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Waller, K. M. J., Leong, R. W. & Paramsothy, S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J. Gastroenterol. Hepatol. 37, 246–255 (2022).

    Article  PubMed  Google Scholar 

  147. Suk, K. T. & Koh, H. New perspective on fecal microbiota transplantation in liver diseases. J. Gastroenterol. Hepatol. 37, 24–33 (2022).

    Article  PubMed  Google Scholar 

  148. Tan, P., Li, X., Shen, J. & Feng, Q. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front. Pharmacol. 11, 574533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kang, G. U. et al. Exploration of potential gut microbiota-derived biomarkers to predict the success of fecal microbiota transplantation in ulcerative colitis: a prospective cohort in Korea. Gut Liver 16, 775–785 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu, D. et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1043–1050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ohkusa, T., Koido, S., Nishikawa, Y. & Sato, N. Gut microbiota and chronic constipation: a review and update. Front. Med. 6, 19 (2019).

    Article  Google Scholar 

  153. Morais, L. H., Schreiber, H. L. IV & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Weersma, R. K., Zhernakova, A. & Fu, J. Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, J. et al. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat. Commun. 13, 136 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kieser, S., Zdobnov, E. M. & Trajkovski, M. Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Comput. Biol. 18, e1009947 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sontheimer-Phelps, A. et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell. Mol. Gastroenterol. Hepatol. 9, 507–526 (2020).

    Article  PubMed  Google Scholar 

  160. Lauschke, V. M. & Ingelman-Sundberg, M. The importance of patient-specific factors for hepatic drug response and toxicity. Int. J. Mol. Sci. 17, 1714 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Swanson, H. I. Drug metabolism by the host and gut microbiota: a partnership or rivalry? Drug Metab. Dispos. 43, 1499–1504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vázquez-Baeza, Y. et al. Impacts of the human gut microbiome on therapeutics. Annu. Rev. Pharmacol. Toxicol. 58, 253–270 (2018).

    Article  PubMed  Google Scholar 

  163. Davies, J. C. et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir. Med. 4, 107–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chakrabarti, R. S. et al. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 6, e23355 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Forslund, S. K. et al. Combinatorial, additive and dose-dependent drug–microbiome associations. Nature 600, 500–505 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  166. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Awoniyi, M. et al. Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC. Gut 72, 671–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Enaud, R. et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front. Cell. Infect. Microbiol. 10, 9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ray, K. The oral–gut axis in IBD. Nat. Rev. Gastroenterol. Hepatol. 17, 532 (2020).

    Article  PubMed  Google Scholar 

  170. De Pessemier, B. et al. Gut–skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms 9, 353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Svegliati-Baroni, G., Patricio, B., Lioci, G., Macedo, M. P. & Gastaldelli, A. Gut-pancreas-liver axis as a target for treatment of NAFLD/NASH. Int. J. Mol. Sci. 21, 5820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Taghinezhad-S, S. et al. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis. Cell. Mol. Life Sci. 78, 1191–1206 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Schembri, M. A., Nhu, N. T. K. & Phan, M. D. Gut–bladder axis in recurrent UTI. Nat. Microbiol. 7, 601–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  175. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wikswo, J. P. The relevance and potential roles of microphysiological systems in biology and medicine. Exp. Biol. Med. 239, 1061–1072 (2014).

    Article  Google Scholar 

  178. Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672–12677 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  182. Natividad, J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, 2802 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  183. Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl Acad. Sci. USA 105, 18188–18193 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Simon, J. C., Marchesi, J. R., Mougel, C. & Selosse, M. A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Gutierrez Lopez, D. E., Lashinger, L. M., Weinstock, G. M. & Bray, M. S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 33, 873–887 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Sarkar, A. et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn. Sci. 22, 611–636 (2018).

    Article  PubMed  Google Scholar 

  187. Tomofuji, Y. et al. Reconstruction of the personal information from human genome reads in gut metagenome sequencing data. Nat. Microbiol. 8, 1079–1094 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Woo, V. & Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 14, 2022407 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat. Rev. Neurol. 11, 625–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. D’Alessio, S. et al. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat. Rev. Gastroenterol. Hepatol. 19, 169–184 (2022).

    Article  PubMed  Google Scholar 

  193. Reshetnyak, V. I., Burmistrov, A. I. & Maev, I. V. Helicobacter pylori: commensal, symbiont or pathogen? World J. Gastroenterol. 27, 545–560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Duboux, S., Van Wijchen, M. & Kleerebezem, M. The possible link between manufacturing and probiotic efficacy; a molecular point of view on Bifidobacterium. Front. Microbiol. 12, 812536 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Johnston, C. D. & Bullman, S. The tumour-associated microbiome. Nat. Rev. Gastroenterol. Hepatol. 19, 347–348 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Neurath, M. F. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 76–77 (2020).

    Article  PubMed  Google Scholar 

  197. Spellberg, B. et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 46, 155–164 (2008).

    Article  PubMed  Google Scholar 

  198. Grimaldi, A. et al. Improved SARS-CoV-2 sequencing surveillance allows the identification of new variants and signatures in infected patients. Genome Med. 14, 90 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shoji, J. Y., Davis, R. P., Mummery, C. L. & Krauss, S. Global meta‐analysis of organoid and organ‐on‐chip research. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202301067 (2023).

  200. Kawasaki, M., Goyama, T., Tachibana, Y., Nagao, I. & Ambrosini, Y. M. Farm and companion animal organoid models in translational research: a powerful tool to bridge the gap between mice and humans. Front. Med. Technol. 4, 895379 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Rodrigues, N. S. et al. Biomaterial and biofilm interactions with the pulp-dentin complex-on-a-chip. J. Dent. Res. 100, 1136–1143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wright, E., Neethirajan, S. & Weng, X. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms. Biotechnol. Bioeng. 112, 2351–2359 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Greenhalgh, K. et al. Integrated in vitro and in silico modeling delineates the molecular effects of a synbiotic regimen on colorectal-cancer-derived cells. Cell Rep. 27, 1621–1632 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Hu, W. et al. A cellular chip-MS system for investigation of Lactobacillus rhamnosus GG and irinotecan synergistic effects on colorectal cancer. Chin. Chem. Lett. 33, 2096–2100 (2022).

    Article  CAS  Google Scholar 

  205. van Rijn, J. M. et al. High-definition DIC imaging uncovers transient stages of pathogen infection cycles on the surface of human adult stem cell-derived intestinal epithelium. mBio 13, e00022 (2022).

    PubMed Central  Google Scholar 

  206. Muscogiuri, G. et al. Gut microbiota: a new path to treat obesity. Int. J. Obes. Suppl. 9, 10–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  208. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  210. Canyelles, M. et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int. J. Mol. Sci. 19, 3228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Jiang, C., Li, G., Huang, P., Liu, Z. & Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis. 58, 1–15 (2017).

    Article  PubMed  Google Scholar 

  212. Correale, J., Hohlfeld, R. & Baranzini, S. E. The role of the gut microbiota in multiple sclerosis. Nat. Rev. Neurol. 18, 544–558 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Garcia-Gutierrez, E., Narbad, A. & Rodríguez, J. M. Autism spectrum disorder associated with gut microbiota at immune, metabolomic, and neuroactive level. Front. Neurosci. 14, 578666 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Marx, U. et al. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365–394 (2020).

    PubMed  PubMed Central  Google Scholar 

  215. Nieskens, T. T. G. et al. Nephrotoxic antisense oligonucleotide SPC5001 induces kidney injury biomarkers in a proximal tubule-on-a-chip. Arch. Toxicol. 95, 2123–2136 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Jang, K.-J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. 11, eaax5516 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Hübner, J. et al. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci. Rep. 8, 15010 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  218. Foster, A. J. et al. Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch. Toxicol. 93, 1021–1037 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. McAleer, C. W. et al. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci. Rep. 9, 9619 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Koh (Yonsei University Severance Hospital), D.-W. Lee (Yonsei University), H. Y. Cho (Seoul National University Hospital) and J.-M. Song (Sungshin Women’s University) for their valuable comments. This work was supported by the Bio-industrial Technology Development Program (20018770) from the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Senior Research Award from Crohn’s and Colitis Foundation of America (CCFA).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceiving the idea, developing the outline, conceptualizing the figures, and writing and revising the manuscript.

Corresponding authors

Correspondence to Woojung Shin or Hyun Jung Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Leopoldo Segal, Sabeth Verpoorte, Shaun Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Emulate: https://emulatebio.com/

EU Reference Laboratory for alternatives to animal testing (EURL ECVAM): https://joint-research-centre.ec.europa.eu/eu-reference-laboratory-alternatives-animal-testing-eurl-ecvam_en

European Organ-on-chip Society (EUROoCS): https://euroocs.eu/

Human Microbiome Project Initiative (HMP): https://commonfund.nih.gov/hmp/initiatives

Human Organ and Disease Models Technologies Consortium (hDMT): https://www.hdmt.technology/

Innovative Science and Technology Approaches for New Drugs (ISTAND) Pilot Program: https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program

Mimetas: https://www.mimetas.com/en/home/

National Center for Advancing Translational Sciences (NCATS) Tissue Chip Initiatives: https://ncats.nih.gov/tissuechip/projects

Organ-on-a-Chip/Tissue-on-a-Chip Engineering and Efficacy Standardization Working Group: https://www.nist.gov/pml/microsystems-and-nanotechnology-division/biophysical-and-biomedical-measurement-group/organ

The NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM): https://ntp.niehs.nih.gov/whatwestudy/niceatm

TissUse: https://www.tissuse.com/en/

US FDA Modernization Act 2.0: https://www.congress.gov/bill/117th-congress/senate-bill/5002/text

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.C., Than, N., Min, S. et al. Modelling host–microbiome interactions in organ-on-a-chip platforms. Nat Rev Bioeng 2, 175–191 (2024). https://doi.org/10.1038/s44222-023-00130-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00130-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research