Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organ-on-chip models for infectious disease research

Abstract

Research on microbial pathogens has traditionally relied on animal and cell culture models to mimic infection processes in the host. Over recent years, developments in microfluidics and bioengineering have led to organ-on-chip (OoC) technologies. These microfluidic systems create conditions that are more physiologically relevant and can be considered humanized in vitro models. Here we review various OoC models and how they have been applied for infectious disease research. We outline the properties that make them valuable tools in microbiology, such as dynamic microenvironments, vascularization, near-physiological tissue constitutions and partial integration of functional immune cells, as well as their limitations. Finally, we discuss the prospects for OoCs and their potential role in future infectious disease research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common OoC models.
Fig. 2: OoC models in infection biology.
Fig. 3: Exemplary OoC models used in infectious disease research.
Fig. 4: Integrating functional immune cells in OoC models.

Similar content being viewed by others

References

  1. Pirofski, L. A. & Casadevall, A. The damage-response framework as a tool for the physician-scientist to understand the pathogenesis of infectious diseases. J. Infect. Dis. 218, S7–S11 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Clark, C. & Drummond, R. A. The hidden cost of modern medical interventions: how medical advances have shaped the prevalence of human fungal disease. Pathogens 8, 45 (2019).

  3. Pound, P. & Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J. Transl. Med. 16, 304 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. MacArthur Clark, J. The 3Rs in research: a contemporary approach to replacement, reduction and refinement. Br. J. Nutr. 120, S1–S7 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Han, J. J. F. D. A. Modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 47, 449–450 (2023).

    Article  PubMed  Google Scholar 

  6. Advancing New Alternative Methodologies at FDA (US Food and Drug Administration, 2021).

  7. Rumsey, J. W. et al. Classical complement pathway inhibition in a ‘human-on-a-chip’ model of autoimmune demyelinating neuropathies. Adv. Ther. 5, 2200030 (2022).

  8. Talaat, K. R. et al. Consensus report on shigella controlled human infection model: conduct of studies. Clin. Infect. Dis. 69, S580–S590 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lempp, F. A. et al. Sodium taurocholate cotransporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes. Hepatology 66, 703–716 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Raterman, E. L. & Jerse, A. E. Female mouse model of neisseria gonorrhoeae infection. Methods Mol. Biol. 1997, 413–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, L., Lu, C. & Sun, Q. Tree shrew as a new animal model for the study of dengue virus. Front. Immunol. 12, 621164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, J. et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat. Biomed. Eng. 5, 830–846 (2021).

    Article  PubMed  Google Scholar 

  13. Thacker, V. V. et al. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife 9, e.59961 (2020).

    Article  Google Scholar 

  14. Deinhardt-Emmer, S. et al. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 12, 025012 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Siwczak, F. et al. Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials 287, 121632 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Hoang, T. N. M. et al. Invasive aspergillosis-on-chip: a quantitative treatment study of human Aspergillus fumigatus infection. Biomaterials 283, 121420 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Schicke, E. et al. Staphylococcus aureus lung infection results in down-regulation of surfactant protein-a mainly caused by pro-inflammatory macrophages. Microorganisms 8, 577 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomen, P. et al. Bacterial biofilm under flow: first a physical struggle to stay, then a matter of breathing. PLoS ONE 12, e0175197 (2017).

  19. Grassart, A. et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection. Cell Host Microbe 26, 565 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Sharma, K. et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 10, e66481 (2021).

  21. Sunuwar, L. et al. Mechanical stimuli affect Escherichia coli heat-stable enterotoxin-cyclic GMP signaling in a human enteroid intestine-chip model. Infect. Immun. https://doi.org/10.1128/IAI.00866-19 (2020).

  22. Wilson, D. & Hube, B. Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation. Eukaryot. Cell 9, 278–287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richardson, L. S., Kim, S., Han, A. & Menon, R. Modeling ascending infection with a feto-maternal interface organ-on-chip. Lab Chip 20, 4486–4501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tantengco, O. A. G. et al. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface inflammation but are insufficient to cause preterm delivery. Front. Cell Dev. Biol. 10, 931609 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Radnaa, E. et al. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab Chip 21, 1956–1973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baumler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, H. J., Lee, J., Choi, J. H., Bahinski, A. & Ingber, D. E. Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device. J. Vis. Exp. 30, 54344 (2016).

    Google Scholar 

  30. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    CAS  PubMed  Google Scholar 

  31. Gazzaniga, F. S. et al. Harnessing colon chip technology to identify commensal bacteria that promote host tolerance to infection. Front. Cell Infect. Microbiol. 11, 638014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahajan, G. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10, 201 (2022).

  33. Bumann, D. Heterogeneous host-pathogen encounters: act locally, think globally. Cell Host Microbe 17, 13–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Maurer, M. et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220, 119396 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, H. J. & Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    Article  CAS  Google Scholar 

  36. Sengupta, A. et al. A new immortalized human alveolar epithelial cell model to study lung injury and toxicity on a breathing lung-on-chip system. Front. Toxicol. 4, 840606 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, J. et al. A virus-induced kidney disease model based on organ-on-a-chip: pathogenesis exploration of virus-related renal dysfunctions. Biomaterials 219, 119367 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Ianevski, A. et al. Seven classes of antiviral agents. Cell. Mol. Life Sci. 79, 605 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bein, A. et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip. Front. Pharm. 12, 718484 (2021).

    Article  CAS  Google Scholar 

  40. Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ortega-Prieto, A. M. et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat. Commun. 9, 682 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beyer, S. et al. Lectin staining of microvascular glycocalyx in microfluidic cancer cell extravasation assays. Life 11, 179 (2021).

  43. Junaid, A. et al. Ebola hemorrhagic shock syndrome-on-a-chip. iScience 23, 100765 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Tang, H., Abouleila, Y. & Mashaghi, A. Lassa hemorrhagic shock syndrome-on-a-chip. Biotechnol. Bioeng. 118, 1405–1410 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Bernabeu, M. et al. Binding heterogeneity of plasmodium falciparum to engineered 3D brain microvessels is mediated by EPCR and ICAM-1. mBio https://doi.org/10.1128/mBio.00420-19 (2019).

  46. Sekizuka, T. et al. Streptococcal toxic shock syndrome caused by the dissemination of an invasive emm3/ST15 strain of Streptococcus pyogenes. BMC Infect. Dis. 17, 774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Allert, S. et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio https://doi.org/10.1128/mBio.00915-18 (2018).

  48. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, S., Jin, L., Zheng, Y. & Zhu, J. Modeling human HSV infection via a vascularized immune-competent skin-on-chip platform. Nat. Commun. 13, 5481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mosavati, B., Oleinikov, A. & Du, E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci. Rep. 12, 15278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baumgart, D. C. & Carding, S. R. Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627–1640 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ardizzoni, A., Wheeler, R. T. & Pericolini, E. It takes two to tango: how a dysregulation of the innate immunity, coupled with Candida virulence, triggers VVC onset. Front. Microbiol. 12, 692491 (2021).

  53. Nawroth, J. C. et al. A microengineered airway lung chip models key features of viral-induced exacerbation of asthma. Am. J. Respir. Cell Mol. Biol. 63, 591–600 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Groger, M. et al. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model. Sci. Rep. 6, 21868 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beaurivage, C. et al. Development of a human primary gut-on-a-chip to model inflammatory processes. Sci. Rep. 10, 21475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sieber, S. et al. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12, 479–489 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Rigat-Brugarolas, L. G. et al. A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14, 1715–1724 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Goyal, G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv. Sci. 9, e2103241 (2022).

    Article  Google Scholar 

  59. Bailey, M., Christoforidou, Z. & Lewis, M. C. The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants. Vet. Immunol. Immunopathol. 152, 13–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Picollet-D’Hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    Article  PubMed  Google Scholar 

  61. Rupar, M. J. et al. Development of a human malaria-on-a-chip disease model for drug efficacy and off-target toxicity evaluation. Sci. Rep. 13, 10509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tarr, P. I., Gordon, C. A. & Chandler, W. L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086 (2005).

    CAS  PubMed  Google Scholar 

  63. Lee, Y. et al. Gut–kidney axis on chip for studying effects of antibiotics on risk of hemolytic uremic syndrome by shiga toxin-producing Escherichia coli. Toxins 13, 775 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao, Y. et al. Cryptococcus neoformans, a global threat to human health. Infect. Dis. Poverty 12, 20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, S. Y. et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight 2, e95978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tsamandouras, N. et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 19, 1499–1512 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Berthier, E., Young, E. W. & Beebe, D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12, 1224–1237, (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Leung, C. M., de Haan, P., Ronaldson-Bouchard, K. & Kim, G. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).

  69. Celikkin, N. et al. Tackling current biomedical challenges with frontier biofabrication and organ-on-a-chip technologies. Front. Bioeng. Biotechnol. 9, 732130 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kutluk, H., Bastounis, E. E. & Constantinou, I. Integration of extracellular matrices into organ-on-chip systems. Adv. Health. Mater. 12, e2203256 (2023).

    Article  Google Scholar 

  71. Trietsch, S. J. et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun. 8, 262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Arik, Y. B. et al. Collagen I based enzymatically degradable membranes for organ-on-a-chip barrier models. ACS Biomater. Sci. Eng. 7, 2998–3005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zustiak, S. P. & Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fairbanks, B. D., Singh, S. P., Bowman, C. N. & Anseth, K. S. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44, 2444–2450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, J., Silberstein, M. N., Abdeen, A. A., Kim, S. Y. & Kilian, K. A. Mechanochemical functionalization of disulfide linked hydrogels. Mater. Horiz. 3, 447–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hinman, S. S. et al. Suspended collagen hydrogels to replicate human colonic epithelial cell interactions with immune cells. Adv. Biol. 6, e2200129 (2022).

    Article  Google Scholar 

  77. Arzumanian, V. A., Kiseleva, O. I. & Poverennaya, E. V. The curious case of the HepG2 cell line: 40 years of expertise. Int. J. Mol. Sci. 22, 13135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maas-Szabowski, N., Starker, A. & Fusenig, N. E. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-alpha. J. Cell Sci. 116, 2937–2948 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pushparaj, K. et al. Out of box thinking to tangible science: a benchmark history of 3D bio-printing in regenerative medicine and tissues engineering. Life 13, 954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clarke, G. A. et al. Advancement of sensor integrated organ-on-chip devices. Sensors 21, 1367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fuchs, S. et al. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. ACS Biomater. Sci. Eng. 7, 2926–2948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mousavi Shaegh, S. A. et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 10, 044111 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Galiani, S., Eggeling, C. & Reglinski, K. Super-resolution microscopy and studies of peroxisomes. Biol. Chem. 404, 87–106 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng, T. & Hang, H. C. Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J. Am. Chem. Soc. 138, 14423–14433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Collot, M., Pfister, S. & Klymchenko, A. S. Advanced functional fluorescent probes for cell plasma membranes. Curr. Opin. Chem. Biol. 69, 102161 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Barbotin, A. et al. z-STED imaging and spectroscopy to investigate nanoscale membrane structure and dynamics. Biophys. J. 118, 2448–2457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hashimoto, R. et al. SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression. Sci. Adv. 8, eabo6783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Domizio, J. D. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603, 145–151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brown, J. A. et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 13, 306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 7, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Thacker, V. V. et al. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep. 22, e52744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kasendra, M. et al. Duodenum intestine-chip for preclinical drug assessment in a human relevant model. eLife 9, e50135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Piergiovanni, M., Leite, S. B., Corvi, R. & Whelan, M. Standardisation needs for organ on chip devices. Lab Chip 21, 2857–2868 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Mastrangeli, M. & van den Eijnden-van Raaij, J. Organs-on-chip: the way forward. Stem Cell Rep. 16, 2037–2043 (2021).

    Article  CAS  Google Scholar 

  99. Gough, A., Vernetti, L., Bergenthal, L., Shun, T. Y. & Taylor, D. L. The microphysiology systems database for analyzing and modeling compound interactions with human and animal organ models. Appl. Vitr. Toxicol. 2, 103–117 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2051, Project-ID 390713860). R.A.-R., A.S.M., M.T.F., F.H.S., C.E., K.P. and B.H. are supported by the DFG Cluster of Excellence ‘Balance of the Microverse’. R.A.-R. acknowledges project funding from the Carl Zeiss Foundation. A.S.M. has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 101007799 (Inno4Vac). This joint undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA). A.S.M. is further supported by the DFG Priority Programme SPP 2332 ‘Physics of Parasitism’, by the Leibniz ScienceCampus InfectoOptics Jena, which is financed by the funding line Strategic Networking of the Leibniz Association, and the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; BMBF) funding programme Photonics Research Germany (FKZ: 13N15716) which is integrated into the Leibniz Center for Photonics in Infection Research (LPI). The LPI initiated by Leibniz-Institute of Photonic Technology (IPHT), Leibniz-Hans-Knöll-Institute (Leibniz-HKI), Jena University Hospital (Uniklinikum Jena; UKJ) and Friedrich-Schiller-University (FSU) Jena is part of the BMBF national roadmap for research infrastructures. M.S.G. was supported by the DFG Emmy Noether programme (project 434385622/GR 5617/1-1). M.T.F. received funding from the German Federal Ministry of Education and Research within the funding programme Photonics Research Germany, Project Leibniz Center for Photonics in Infection Research, Subproject LPI-BT3, contract number 13N15709. M.T.F. was further supported by the Leibniz ScienceCampus InfectoOptics Jena (PNEUTHERA project), which is financed by the funding line Strategic Networking of the Leibniz Association. B.H. is further supported by the DFG Priority Programme SPP 2225 ‘Exit strategies of intracellular pathogens’, the DFG project Hu 532/20-1, the European Union Horizon 2020 grant agreement 847507 (HDM-FUN) and the Marie Sklodowska-Curie grant agreement 812969 (FunHoMic), and the Leibniz Association Campus InfectoOptics SAS-2015-HKI-LWC. M.S.G., M.T.F. and B.H. are further supported by the DFG Collaborative Research Centre (CRC)/Transregio (TRR) 124 FungiNet with project number 210879364 (subprojects B4, C1 and C2). M.T.F. was further supported by the DFG Collaborative Research Centre CRC 1278 ‘PolyTarget’ (project 316213987, subproject Z01). K.P. also acknowledges support from the DFG Priority Programme SPP2389 ‘Emergent Functions of Bacterial Multicellularity’. F.H.S. is further supported by the DFG Collaborative Research Centre CRC 1278 ‘PolyTarget’ (project 316213987, projects A03 and B04), by the DFG Priority Programme SPP 2332 ‘Physics of Parasitism’ (project 491921522), and the research unit 2811 (project 397384169, project TP02). C.E. acknowledges support by the Microverse Imaging Center (A. Jost, P. Then, S. Neumann and G. Zhurgenbayeva) and further funding by the DFG (project 316213987 – SFB 1278 (projects A04, D01, Z01); and project PolaRas EG 325/2-1;), Free State of Thuringia (TAB; AdvancedSTED/FGZ: 2018 FGI 0022; Advanced Flu-Spec/2020 FGZ: FGI 0031), the Leibniz ScienceCampus InfectoOptics Jena (project PNEUTHERA, funding line Strategic Networking of the Leibniz Association), and the BMBF funding programme Photonics Research Germany (FKZ: 13N15716), which is integrated into the Leibniz Center for Photonics in Infection Research (LPI). The LPI initiated by Leibniz-IPHT, Leibniz-HKI, UKJ and FSU Jena is part of the BMBF national roadmap for research infrastructures.

Author information

Authors and Affiliations

Authors

Contributions

R.A.-R. was responsible for conceptualization, literature research, writing and editing the manuscript, and preparing figures. A.S.M., M.T.F., C.E. and F.H.S. were responsible for writing sections of the manuscript and editing the manuscript. K.P. was responsible for editing the manuscript. B.H. was responsible for conceptualization, supervision and editing the manuscript. M.S.G. was responsible for conceptualization, supervision, writing sections of the manuscript, editing the manuscript, and preparing figures.

Corresponding author

Correspondence to Bernhard Hube.

Ethics declarations

Competing interests

A.S.M. consults for and holds equity in Dynamic42 GmbH. R.A.-R., M.T.F., M.S.G. and B.H. are members of the Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), which holds a cooperation agreement with Dynamic42 GmbH. The Leibniz-HKI is also member of the EU consortium FunHoMic, which maintains a consortium agreement and includes the company Mimetas. The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Adithya Sridhar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Roman, R., Mosig, A.S., Figge, M.T. et al. Organ-on-chip models for infectious disease research. Nat Microbiol 9, 891–904 (2024). https://doi.org/10.1038/s41564-024-01645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01645-6

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology