Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering the gut microbiome

Abstract

The role of the gut microbiome in human health and disease is being increasingly recognized. Gut microbes (including bacteria, fungi and viruses) can be genetically modified to diagnose (as biosensors) and treat (detoxification, controlled biosynthesis and precision targeting) the dysbiosis of the microbiome, which has been linked to several cancers and metabolic, autoimmune and infectious diseases. However, conventional manipulation of single microbial strains is often insufficient, and engineering a mutually supportive and collaborative network of gut microbes — ‘a keystone consortium’ — could be more effective. In this Review, we summarize gut microbiome engineering strategies against selected diseases and critically discuss their translational potential. We focus mainly on genetic engineering approaches, but we also discuss complementary strategies such as encapsulation, coupling with electronic devices, orthogonal diet engineering and faecal microbiota transplantation.

Key points

  • The human gastrointestinal (GI) tract contains thousands of microbial species, including bacteria, fungi and viruses, the dysbiosis of which has been linked to the pathogenesis of many diseases.

  • The microbiome can be engineered to treat various pathologies including cancer, metabolic and autoimmune diseases.

  • ‘Holistic’ modulation of the gut microbiome through orthogonal approaches and/or engineering mutually supportive and collaborative networks of gut microbes is an emerging and promising alternative to engineering single microbes.

  • Proper biocontainment and precision targeting are among the main challenges to be overcome for the clinical translation of gut microbiome engineering strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones of microbial engineering.
Fig. 2: Strategies for the holistic modulation of gut microorganisms.
Fig. 3: Translational applications of engineered microbes as disease therapeutics.

Similar content being viewed by others

References

  1. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016). This article reviews the role of the gut microbiome in human health and disease.

    Google Scholar 

  2. Zuo, T., Kamm, M. A., Colombel, J. F. & Ng, S. C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15, 440–452 (2018).

    Google Scholar 

  3. Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26, 110–130 (2017).

    Google Scholar 

  4. Neish, A. S. Microbes in gastrointestinal health and disease. Gastroenterology 136, 65–80 (2009).

    Google Scholar 

  5. Grenham, S., Clarke, G., Cryan, J. F. & Dinan, T. G. Brain–gut–microbe communication in health and disease. Front. Physiol. 2, 94 (2011).

    Google Scholar 

  6. Arnold, J. W., Roach, J. & Azcarate-Peril, M. A. Emerging technologies for gut microbiome research. Trends Microbiol. 24, 887–901 (2016).

    Google Scholar 

  7. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e1099 (2021).

    Google Scholar 

  8. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Google Scholar 

  9. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  10. Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Google Scholar 

  11. Pinero-Lambea, C., Ruano-Gallego, D. & Fernandez, L. A. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94–102 (2015).

    Google Scholar 

  12. Wu, G., Zhao, N., Zhang, C., Lam, Y. Y. & Zhao, L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med. 13, 22 (2021).

    Google Scholar 

  13. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Google Scholar 

  14. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Google Scholar 

  15. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aau7975 (2019).

    Article  Google Scholar 

  16. Zhao, R. et al. Engineered Escherichia coli Nissle 1917 with urate oxidase and an oxygen-recycling system for hyperuricemia treatment. Gut Microbes 14, 2070391 (2022).

    Google Scholar 

  17. Adolfsen, K. J. et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat. Commun. 12, 6215 (2021).

    Google Scholar 

  18. Puurunen, M. K. et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat. Metab. 3, 1125–1132 (2021).

    Google Scholar 

  19. Pontes, D. S. et al. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr. Purif. 79, 165–175 (2011).

    Google Scholar 

  20. Hidalgo-Cantabrana, C., Goh, Y. J., Pan, M., Sanozky-Dawes, R. & Barrangou, R. Genome editing using the endogenous type I CRISPR–Cas system in Lactobacillus crispatus. Proc. Natl Acad. Sci. USA 116, 15774–15783 (2019).

    Google Scholar 

  21. Zhou, D. et al. CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01367-19 (2019).

    Article  Google Scholar 

  22. Goh, Y. J. & Barrangou, R. Portable CRISPR-Cas9(N) system for flexible genome engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02669-20 (2021).

    Article  Google Scholar 

  23. Huang, H., Song, X. & Yang, S. Development of a RecE/T-assisted CRISPR–Cas9 toolbox for Lactobacillus. Biotechnol. J. 14, e1800690 (2019).

    Google Scholar 

  24. Myrbraten, I. S. et al. CRISPR interference for rapid knockdown of essential cell cycle genes in Lactobacillus plantarum. mSphere https://doi.org/10.1128/mSphere.00007-19 (2019).

    Article  Google Scholar 

  25. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    Google Scholar 

  26. Chappell, T. C. & Nair, N. U. Engineered lactobacilli display anti-biofilm and growth suppressing activities against Pseudomonas aeruginosa. npj Biofilms Microbiomes 6, 48 (2020).

    Google Scholar 

  27. Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aao2586 (2018).

    Article  Google Scholar 

  28. Taniguchi, S. In situ delivery and production system (iDPS) of anti-cancer molecules with gene-engineered bifidobacterium. J. Pers. Med. https://doi.org/10.3390/jpm11060566 (2021).

    Article  Google Scholar 

  29. Carvalho, A. L. et al. Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization. Clin. Exp. Immunol. 196, 287–304 (2019).

    Google Scholar 

  30. Hickey, C. A. et al. Colitogenic Bacteroides thetaiotaomicron antigens access host immune cells in a sulfatase-dependent manner via outer membrane vesicles. Cell Host Microbe 17, 672–680 (2015).

    Google Scholar 

  31. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Google Scholar 

  32. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Google Scholar 

  33. McCarty, N. S. & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37, 181–197 (2019).

    Google Scholar 

  34. Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Google Scholar 

  35. Jin, W. B. et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185, 547–562 e522 (2022).

    Google Scholar 

  36. Sun, Z., Baur, A., Zhurina, D., Yuan, J. & Riedel, C. U. Accessing the inaccessible: molecular tools for bifidobacteria. Appl. Environ. Microbiol. 78, 5035–5042 (2012).

    Google Scholar 

  37. Zuo, F., Chen, S. & Marcotte, H. Engineer probiotic bifidobacteria for food and biomedical applications — current status and future prospective. Biotechnol. Adv. 45, 107654 (2020).

    Google Scholar 

  38. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Google Scholar 

  39. Durmusoglu, D. et al. In situ biomanufacturing of small molecules in the mammalian gut by probiotic Saccharomyces boulardii. ACS Synth Biol 10, 1039–1052 (2021).

    Google Scholar 

  40. Hudson, L. E. et al. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii. PLoS One 9, e112660 (2014).

    Google Scholar 

  41. Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021). This article describes how engineered microbes self-regulate the expression of target proteins according to the surrounding environment.

    Google Scholar 

  42. Zhang, J. et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 609, 341–347 (2022). This article shows the predominance of engineering fungi for the de novo synthesis of complex, multistep molecules.

    Google Scholar 

  43. Cao, Z. et al. The gut virome: a new microbiome component in health and disease. eBioMedicine 81, 104113 (2022).

    Google Scholar 

  44. Salmond, G. P. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).

    Google Scholar 

  45. Kilcher, S. & Loessner, M. J. Engineering bacteriophages as versatile biologics. Trends Microbiol. 27, 355–367 (2019).

    Google Scholar 

  46. Martel, B. & Moineau, S. CRISPR–Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 42, 9504–9513 (2014).

    Google Scholar 

  47. Marinelli, L. J. et al. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One 3, e3957 (2008).

    Google Scholar 

  48. Shin, J., Jardine, P. & Noireaux, V. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synth. Biol. 1, 408–413 (2012).

    Google Scholar 

  49. Kilcher, S., Studer, P., Muessner, C., Klumpp, J. & Loessner, M. J. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc. Natl Acad. Sci. USA 115, 567–572 (2018).

    Google Scholar 

  50. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

    Google Scholar 

  51. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

    Google Scholar 

  52. Bikard, D. et al. Exploiting CRISPR–Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Google Scholar 

  53. Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 29, 1336–1350.e1334 (2019).

    Google Scholar 

  54. Bertozzi Silva, J., Storms, Z. & Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw002 (2016).

    Article  Google Scholar 

  55. Donath, E. Biosensors: Viruses for ultrasensitive assays. Nat. Nanotechnol. 4, 215–216 (2009).

    Google Scholar 

  56. Park, J. S. et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat. Nanotechnol. 4, 259–264 (2009).

    Google Scholar 

  57. Yeh, M. T. et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell Host Microbe 27, 736–751 e738 (2020).

    Google Scholar 

  58. Vesikari, T. et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N. Engl. J. Med. 354, 23–33 (2006).

    Google Scholar 

  59. De Vos, B. et al. Live attenuated human rotavirus vaccine, RIX4414, provides clinical protection in infants against rotavirus strains with and without shared G and P genotypes: integrated analysis of randomized controlled trials. Pediatr. Infect. Dis. J. 28, 261–266 (2009).

    Google Scholar 

  60. Vela Ramirez, J. E., Sharpe, L. A. & Peppas, N. A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 114, 116–131 (2017).

    Google Scholar 

  61. Taddio, A. et al. Survey of the prevalence of immunization non-compliance due to needle fears in children and adults. Vaccine 30, 4807–4812 (2012).

    Google Scholar 

  62. Lin, I. Y., Van, T. T. & Smooker, P. M. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines 3, 940–972 (2015).

    Google Scholar 

  63. Dabrowska, K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).

    Google Scholar 

  64. Stavropoulou, E. & Bezirtzoglou, E. Probiotics in medicine: a long debate. Front. Immunol. 11, 2192 (2020).

    Google Scholar 

  65. Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).

    Google Scholar 

  66. Cristofori, F., Indrio, F., Miniello, V. L., De Angelis, M. & Francavilla, R. Probiotics in celiac disease. Nutrients https://doi.org/10.3390/nu10121824 (2018).

    Article  Google Scholar 

  67. Stenuit, B. & Agathos, S. N. Deciphering microbial community robustness through synthetic ecology and molecular systems synecology. Curr. Opin. Biotechnol. 33, 305–317 (2015).

    Google Scholar 

  68. Tsoi, R. et al. Metabolic division of labor in microbial systems. Proc. Natl Acad. Sci. USA 115, 2526–2531 (2018).

    Google Scholar 

  69. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Google Scholar 

  70. McCarty, N. S., Graham, A. E., Studena, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

    Google Scholar 

  71. Patel, J. R., Oh, J., Wang, S., Crawford, J. M. & Isaacs, F. J. Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell 185, 1487–1505.e1414 (2022). This article reports that the same synthetic genetic elements can function simultaneously in prokaryotes and eukaryotes.

    Google Scholar 

  72. Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489 (2021).

    Google Scholar 

  73. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Google Scholar 

  74. Cazares, A., Figueroa, W. & Cazares, D. Diversity of microbial defence systems. Nat. Rev. Microbiol. 20, 191 (2022).

    Google Scholar 

  75. Huang, M. et al. The activation and limitation of the bacterial natural transformation system: the function in genome evolution and stability. Microbiol. Res. 252, 126856 (2021).

    Google Scholar 

  76. Rodriguez-Grande, J. & Fernandez-Lopez, R. Measuring plasmid conjugation using antibiotic selection. Methods Mol. Biol. 2075, 93–98 (2020).

    Google Scholar 

  77. Lam, K. N. et al. Phage-delivered CRISPR–Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).

    Google Scholar 

  78. Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).

    Google Scholar 

  79. Waller, M. C., Bober, J. R., Nair, N. U. & Beisel, C. L. Toward a genetic tool development pipeline for host-associated bacteria. Curr. Opin. Microbiol. 38, 156–164 (2017).

    Google Scholar 

  80. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    Google Scholar 

  81. Pansegrau, W. et al. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J. Mol. Biol. 239, 623–663 (1994).

    Google Scholar 

  82. Shen, T. C. et al. Engineering the gut microbiota to treat hyperammonemia. J Clin. Invest. 125, 2841–2850 (2015).

    Google Scholar 

  83. Walser, M. & Bodenlos, L. J. Urea metabolism in man. J. Clin. Invest. 38, 1617–1626 (1959).

    Google Scholar 

  84. Mobley, H. L. & Hausinger, R. P. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 53, 85–108 (1989).

    Google Scholar 

  85. Riordan, S. M. & Williams, R. Treatment of hepatic encephalopathy. N. Engl. J. Med. 337, 473–479 (1997).

    Google Scholar 

  86. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Google Scholar 

  87. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Google Scholar 

  88. Cheng, A. G. et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell https://doi.org/10.1016/j.cell.2022.08.003 (2022).

    Article  Google Scholar 

  89. Stein, R. R. et al. Computer-guided design of optimal microbial consortia for immune system modulation. eLife https://doi.org/10.7554/eLife.30916 (2018).

    Article  Google Scholar 

  90. Wang, L. et al. Engineering consortia by polymeric microbial swarmbots. Nat. Commun. 13, 3879 (2022).

    Google Scholar 

  91. El-Salhy, M., Hatlebakk, J. G., Gilja, O. H., Brathen Kristoffersen, A. & Hausken, T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut 69, 859–867 (2020).

    Google Scholar 

  92. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Google Scholar 

  93. Wolter, M. et al. Leveraging diet to engineer the gut microbiome. Nat. Rev. Gastroenterol. Hepatol. 18, 885–902 (2021).

    Google Scholar 

  94. Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep. 24, 1842–1851 (2018).

    Google Scholar 

  95. Lam, S. et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol. Hepatol. 7, 472–484 (2022). This article reviews the roles of non-bacteria components of the gut microbiome in human health and faecal microbiota transplantation.

    Google Scholar 

  96. Oliva, M. et al. Tumor-associated microbiome: where do we stand? Int. J. Mol. Sci. https://doi.org/10.3390/ijms22031446 (2021).

    Article  Google Scholar 

  97. Zheng, J. H. & Min, J. J. Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam. Med. J. 52, 173–184 (2016).

    Google Scholar 

  98. Nguyen, V. H. & Min, J. J. Salmonella-mediated cancer therapy: roles and potential. Nucl. Med. Mol. Imaging 51, 118–126 (2017).

    Google Scholar 

  99. Brown, J. M. Tumor hypoxia in cancer therapy. Methods Enzymol. 435, 297–321 (2007).

    Google Scholar 

  100. St Jean, A. T., Zhang, M. & Forbes, N. S. Bacterial therapies: completing the cancer treatment toolbox. Curr. Opin. Biotechnol. 19, 511–517 (2008).

    Google Scholar 

  101. Liang, K. et al. Genetically engineered Salmonella Typhimurium: recent advances in cancer therapy. Cancer Lett. 448, 168–181 (2019).

    Google Scholar 

  102. Ganai, S., Arenas, R. B., Sauer, J. P., Bentley, B. & Forbes, N. S. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther. 18, 457–466 (2011).

    Google Scholar 

  103. Li, C. X. et al. ‘Obligate’ anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice. Oncol. Lett. 13, 177–183 (2017).

    Google Scholar 

  104. Zhou, S. et al. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system. Cancer Biol. Ther. 17, 732–740 (2016).

    Google Scholar 

  105. Yue, Y. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 6, 898–909 (2022).

    Google Scholar 

  106. Harimoto, T. et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01244-y (2022).

    Article  Google Scholar 

  107. Liu, X., Jiang, S., Piao, L. & Yuan, F. Radiotherapy combined with an engineered Salmonella typhimurium inhibits tumor growth in a mouse model of colon cancer. Exp. Anim. 65, 413–418 (2016).

    Google Scholar 

  108. Zheng, D. W. et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3, 717–728 (2019).

    Google Scholar 

  109. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Google Scholar 

  110. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Google Scholar 

  111. Sedlmayer, F., Aubel, D. & Fussenegger, M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat. Biomed. Eng. 2, 399–415 (2018).

    Google Scholar 

  112. Pedrolli, D. B. et al. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37, 100–115 (2019).

    Google Scholar 

  113. Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21, 132–144 (2020).

    Google Scholar 

  114. Vigouroux, A. & Bikard, D. CRISPR tools to control gene expression in bacteria. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00077-19 (2020).

    Article  Google Scholar 

  115. Landry, B. P. & Tabor, J. J. Engineering diagnostic and therapeutic gut bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.BAD-0020-2017 (2017).

    Article  Google Scholar 

  116. Sheth, R. U. & Wang, H. H. DNA-based memory devices for recording cellular events. Nat. Rev. Genet. 19, 718–732 (2018).

    Google Scholar 

  117. Schmidt, F. et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038 (2022).

    Google Scholar 

  118. Daeffler, K. N. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).

    Google Scholar 

  119. Archer, E. J., Robinson, A. B. & Suel, G. M. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth. Biol. 1, 451–457 (2012).

    Google Scholar 

  120. Kimura, H. et al. Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn’s disease. Dig. Dis. Sci. 42, 1047–1054 (1997).

    Google Scholar 

  121. Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

    Google Scholar 

  122. Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

    Google Scholar 

  123. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018). This article combines gut microbiome engineering and microelectronics to monitor gastrointestinal health.

    Google Scholar 

  124. Fedorak, R. N. et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119, 1473–1482 (2000).

    Google Scholar 

  125. Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

    Google Scholar 

  126. Waeytens, A. et al. Paracellular entry of interleukin-10 producing Lactococcus lactis in inflamed intestinal mucosa in mice. Inflamm. Bowel Dis. 14, 471–479 (2008).

    Google Scholar 

  127. Benbouziane, B. et al. Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J. Biotechnol. 168, 120–129 (2013).

    Google Scholar 

  128. Llosa, M., Schroder, G. & Dehio, C. New perspectives into bacterial DNA transfer to human cells. Trends Microbiol. 20, 355–359 (2012).

    Google Scholar 

  129. Spisni, E. et al. Cyclooxygenase-2 silencing for the treatment of colitis: a combined in vivo strategy based on RNA interference and engineered Escherichia coli. Mol. Ther. 23, 278–289 (2015).

    Google Scholar 

  130. Breyner, N. M. et al. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front. Microbiol. 8, 114 (2017).

    Google Scholar 

  131. Hamady, Z. Z. et al. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59, 461–469 (2010).

    Google Scholar 

  132. Hamady, Z. Z. et al. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan 1. Inflamm. Bowel Dis. 17, 1925–1935 (2011).

    Google Scholar 

  133. Agarwal, P., Khatri, P., Billack, B., Low, W.-K. & Shao, J. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm. Res. 31, 3404–3414 (2014).

    Google Scholar 

  134. Hendrikx, T. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 68, 1504–1515 (2019).

    Google Scholar 

  135. Koh, E. et al. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat. Commun. 13, 3834 (2022).

    Google Scholar 

  136. Paton, A. W., Morona, R. & Paton, J. C. A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat. Med. 6, 265–270 (2000).

    Google Scholar 

  137. Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere https://doi.org/10.1128/mSphere.00045-15 (2016).

    Article  Google Scholar 

  138. Selle, K. et al. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR–Cas3 antimicrobials. mBio https://doi.org/10.1128/mBio.00019-20 (2020).

    Article  Google Scholar 

  139. Edgar, R., Friedman, N., Molshanski-Mor, S. & Qimron, U. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol. 78, 744–751 (2012).

    Google Scholar 

  140. Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).

    Google Scholar 

  141. Torres, L., Kruger, A., Csibra, E., Gianni, E. & Pinheiro, V. B. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem. 60, 393–410 (2016).

    Google Scholar 

  142. Hosseini, S., Curilovs, A. & Cutting, S. M. Biological containment of genetically modified Bacillus subtilis. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02334-17 (2018).

    Article  Google Scholar 

  143. Chan, C. T., Lee, J. W., Cameron, D. E., Bashor, C. J. & Collins, J. J. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12, 82–86 (2016). This article describes strategies for the biocontainment of engineered microbes.

    Google Scholar 

  144. Sasaki, T. et al. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 97, 649–657 (2006).

    Google Scholar 

  145. Reghu, S. & Miyako, E. Nanoengineered Bifidobacterium bifidum with optical activity for photothermal cancer immunotheranostics. Nano Lett. 22, 1880–1888 (2022).

    Google Scholar 

  146. Neil, K. et al. High-efficiency delivery of CRISPR–Cas9 by engineered probiotics enables precise microbiome editing. Mol. Syst. Biol. 17, e10335 (2021).

    Google Scholar 

  147. Leffler, D. A. & Lamont, J. T. Clostridium difficile infection. N. Engl. J. Med. 372, 1539–1548 (2015).

    Google Scholar 

  148. Olsen, S. J. et al. A nosocomial outbreak of fluoroquinolone-resistant salmonella infection. N. Engl. J. Med. 344, 1572–1579 (2001).

    Google Scholar 

  149. Low, K. B. et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat. Biotechnol. 17, 37–41 (1999).

    Google Scholar 

  150. Low, K. B. et al. Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol. Med. 90, 47–60 (2004).

    Google Scholar 

  151. Rosenberg, S. A., Spiess, P. J. & Kleiner, D. E. Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J. Immunother. 25, 218–225 (2002).

    Google Scholar 

  152. Claesen, J. & Fischbach, M. A. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4, 358–364 (2015).

    Google Scholar 

  153. Kurtz, C. et al. Translational development of microbiome-based therapeutics: kinetics of E. coli Nissle and engineered strains in humans and nonhuman primates. Clin. Transl. Sci. 11, 200–207 (2018).

    Google Scholar 

  154. Joeres-Nguyen-Xuan, T. H., Boehm, S. K., Joeres, L., Schulze, J. & Kruis, W. Survival of the probiotic Escherichia coli Nissle 1917 (EcN) in the gastrointestinal tract given in combination with oral mesalamine to healthy volunteers. Inflamm. Bowel Dis. 16, 256–262 (2010).

    Google Scholar 

  155. Russell, B. J. et al. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 185, 3263–3277.e3215 (2022). This article describes approaches of engineering and re-delivering native microbes in the host’s gut, proving that foreign microbes can colonize the original gut microbiome without disrupting the gut environment.

    Google Scholar 

  156. Yang, X. et al. Physiologically inspired mucin coated Escherichia coli Nissle 1917 enhances biotherapy by regulating the pathological microenvironment to improve intestinal colonization. ACS Nano 16, 4041–4058 (2022).

    Google Scholar 

  157. Lubkowicz, D. et al. An engineered bacterial therapeutic lowers urinary oxalate in preclini cal models and in silico simulations of enteric hyperoxaluria. Mol. Syst. Biol. 18, e10539 (2022).

    Google Scholar 

  158. Darsley, M. J. et al. The oral, live attenuated enterotoxigenic Escherichia coli vaccine ACE527 reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease. Clin. Vaccine Immunol. 19, 1921–1931 (2012).

    Google Scholar 

  159. Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

    Google Scholar 

  160. Schmitz-Winnenthal, F. H. et al. Anti-angiogenic activity of VXM01, an oral T-cell vaccine against VEGF receptor 2, in patients with advanced pancreatic cancer: a randomized, placebo-controlled, phase 1 trial. OncoImmunology 4, e1001217 (2015).

    Google Scholar 

  161. Clark, L. C., Jr. & Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 102, 29–45 (1962).

    Google Scholar 

  162. Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic Information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl Acad. Sci. 69, 2904–2909 (1972).

    Google Scholar 

  163. Cohen, S. N., Chang, A. C., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. 70, 3240–3244 (1973).

    Google Scholar 

  164. Alyas, J. et al. Human insulin: history, recent advances, and expression systems for mass production. Biomed. Res. Ther. 8, 4540–4561 (2021).

    Google Scholar 

  165. Ishino, Y., Krupovic, M. & Forterre, P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol. 200, https://doi.org/10.1128/jb.00580-17 (2018).

  166. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Google Scholar 

  167. Weiss, R. & Knight Jr, T. F. in DNA Computing: 6th International Workshop on DNA-Based Computers (DNA 2000) 1–16 (Springer, 2001).

  168. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    Google Scholar 

  169. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796–802 (2003).

    Google Scholar 

  170. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnol. 22, 841–847 (2004).

    Google Scholar 

  171. Levskaya, A. et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

    Google Scholar 

  172. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Google Scholar 

  173. Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    Google Scholar 

  174. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Google Scholar 

  175. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    Google Scholar 

  176. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    Google Scholar 

  177. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Google Scholar 

  178. Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011).

    Google Scholar 

  179. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Google Scholar 

  180. Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58 (2014).

    Google Scholar 

  181. Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    Google Scholar 

  182. Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Google Scholar 

  183. Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).

    Google Scholar 

  184. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Google Scholar 

  185. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. New Engl. J. Med. 386, 220–229 (2022).

    Google Scholar 

  186. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Google Scholar 

  187. Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15, 306–316 (2014).

    Google Scholar 

  188. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Google Scholar 

  189. Zuo, T. et al. Human–gut–DNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 28, 741–751.e744 (2020).

    Google Scholar 

  190. Bai, X. et al. Landscape of the gut archaeome in association with geography, ethnicity, urbanization, and diet in the Chinese population. Microbiome 10, 147 (2022).

    Google Scholar 

  191. Sun, Y. et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. Gastroenterology 160, 272–286.e211 (2021).

    Google Scholar 

Download references

Acknowledgements

T.Z. discloses support for publication of this work from the National Natural Science Foundation of China (NSFC grant numbers 82172323 and 32100134), the Municipal Key Research and Development Program of Guangzhou (grant number 202206010014). We acknowledge intellectual support from the Key Laboratory of Human Microbiome and Chronic diseases (Sun Yat-sen University), Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Contributions

T.Z. conceived the manuscript. X.B., Z.H. and T.Z. wrote the manuscript. B.M.S., A.M.D.-T., M.P.E, F.Z., X.L. and E.B. provided substantial intellectual contributions and revised the manuscript. T.Z. and G.L. supervised this study and the drafting of this manuscript.

Corresponding authors

Correspondence to Guoxin Li or Tao Zuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Hiroshi Ohno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Huang, Z., Duraj-Thatte, A.M. et al. Engineering the gut microbiome. Nat Rev Bioeng 1, 665–679 (2023). https://doi.org/10.1038/s44222-023-00072-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00072-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research