Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuroimaging and multiomics reveal cross-scale circuit abnormalities in schizophrenia

Abstract

Schizophrenia (SCZ) is a highly heterogeneous disorder with diverse clinical manifestations and macro- and microscale biological variations, usually observed at dissociable levels. Here we propose a cross-scale, circuit-based framework to connect heterogeneous clinical symptoms, large-scale brain circuit dysfunctions, and genetic, molecular and cellular abnormalities in SCZ. Using connectomic and predictive models on three independent neuroimaging datasets (n = 1,199, including patients with SCZ and healthy controls), we first identified two macroscale dysconnectivity dimensions for corticocortical and corticostriatal circuits, each associated with specific clinical symptoms. We then associated macroscale dysconnectivity with disrupted cellular circuits using extended imaging transcriptomic and genetic analyses on multiomics data. Our findings suggest a two-dimensional cross-scale heterogeneity model of SCZ, which reveals how distinct genetic disruptions affect specific cellular-level deficits, resulting in system-level brain circuit dysconnectivity responsible for the heterogeneous symptoms in SCZ. These findings significantly improve our understanding of cross-scale heterogeneity in SCZ, advancing its pathophysiology and treatment development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Highly reproducible corticocortical and corticostriatal dysconnectivity patterns in SCZ.
Fig. 2: Corticocortical and corticostriatal dysconnectivity associated with clinical symptoms.
Fig. 3: Cell enrichment of dysconnectivity transcriptional correlates.
Fig. 4: Population-based and person-specific genomic analyses reveal the cell types implicated in the genetic risk of SCZ.
Fig. 5: Cell-type-specific PRS linked to dysconnectivity.
Fig. 6: A hypothetical model linking the macroscale dysconnectivity to microscale cellular circuits and clinical symptoms in SCZ.

Similar content being viewed by others

Data availability

The COBRE dataset can be accessed through the COINS data exchange portal112 (https://coins.trendscenter.org/). The UKB data can be requested through a standard protocol (https://www.ukbiobank.ac.uk/register-apply/). The Brainnetome atlas can be downloaded at https://atlas.brainnetome.org/download.html. The Neurosynth database can be downloaded at https://github.com/neurosynth/neurosynth-data. The AHBA is freely available at https://human.brain-map.org/. The Lake68 single-cell data are publicly available at the National Center for Biotechnology Information under the SuperSeries accession code GSE97942. The ABA69 single-cell data are publicly available at https://portal.brain-map.org/atlases-and-data/rnaseq. The SCZ GWAS78 data are publicly available at https://pgc.unc.edu/for-researchers/download-results/. All study data supporting the findings are provided within the paper and in its Supplementary Information. All raw data from the SCZ-I and SCZ-II datasets will be made available upon reasonable request to the corresponding authors.

Code availability

The preprocessing software for resting-state fMRI data is freely available (BRANT114 v3.35, http://brant.brainnetome.org/en/latest/). The SurfStat toolbox for surface-wide statistical comparisons is freely available at https://www.math.mcgill.ca/keith/surfstat/. Corticocortical connectivity (first functional gradient) was calculated based on open-source codes at https://github.com/NeuroanatomyAndConnectivity/gradient_analysis. The toolbox for performing spatial permutation test (spin test) is freely available at https://github.com/spin-test/spin-test. Functional decodings were performed based on the Neurosynth package openly available at https://github.com/neurosynth/neurosynth. The pyGAM package for performing symptom prediction analysis is openly available at https://github.com/dswah/pyGAM. The abagen toolbox for AHBA data processing is freely available at https://github.com/rmarkello/abagen. The pipeline for single-cell data processing is consistent with that performed by ref. 71, and the codes are openly available at https://github.com/kevmanderson/2020_PNAS_Depression. FGSEA was performed based on the fgsea package, which is openly available at https://github.com/ctlab/fgsea. The MAGMA (v 1.08)76 software and reference data are publicly available at https://ctg.cncr.nl/software/magma. The PLINK (v1.07)117 software is freely available at https://www.cog-genomics.org/plink/. GO enrichment analysis was performed using the Metascape137 platform (https://metascape.org/gp/index.html#/main/step1). The LDSC package is available at https://github.com/bulik/ldsc. All custom codes used in the analysis are publicly available at https://github.com/BingLiu-Lab/scz_cross-scale_abnormalities.

References

  1. Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Voineskos, A. N., Jacobs, G. R. & Ameis, S. H. Neuroimaging heterogeneity in psychosis: neurobiological underpinnings and opportunities for prognostic and therapeutic innovation. Biol. Psychiatry 88, 95–102 (2020).

    Article  PubMed  Google Scholar 

  3. Price, A. J., Jaffe, A. E. & Weinberger, D. R. Cortical cellular diversity and development in schizophrenia. Mol. Psychiatry 26, 203–217 (2021).

    Article  PubMed  Google Scholar 

  4. van den Heuvel, M. P., Scholtens, L. H., de Reus, M. A. & Kahn, R. S. Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol. Psychiatry 80, 293–301 (2016).

    Article  PubMed  Google Scholar 

  5. Scholtens, L. H. & van den Heuvel, M. P. Multimodal connectomics in psychiatry: bridging scales from micro to macro. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 767–776 (2018).

    PubMed  Google Scholar 

  6. Keshavan, M. S. et al. Neuroimaging in schizophrenia. Neuroimaging Clin. N. Am. 30, 73–83 (2020).

    Article  PubMed  Google Scholar 

  7. Gur, R. E. & Gur, R. C. Functional magnetic resonance imaging in schizophrenia. Dialogues Clin. Neurosci. 12, 333–343 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fornito, A., Zalesky, A., Pantelis, C. & Bullmore, E. T. Schizophrenia, neuroimaging and connectomics. Neuroimage 62, 2296–2314 (2012).

    Article  PubMed  Google Scholar 

  10. van den Heuvel, M. P. & Fornito, A. Brain networks in schizophrenia. Neuropsychol. Rev. 24, 32–48 (2014).

    Article  PubMed  Google Scholar 

  11. Li, T. et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr. Bull. 43, 436–448 (2017).

    PubMed  Google Scholar 

  12. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P. & Mechelli, A. Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev. 35, 1110–1124 (2011).

    Article  PubMed  Google Scholar 

  13. Lynall, M.-E. et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Woodward, N. D., Karbasforoushan, H. & Heckers, S. Thalamocortical dysconnectivity in schizophrenia. Am. J. Psychiatry 169, 1092–1099 (2012).

    Article  PubMed  Google Scholar 

  15. Fornito, A. et al. Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry 70, 1143–1151 (2013).

    Article  PubMed  Google Scholar 

  16. Li, A. et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat. Med. 26, 558–565 (2020).

    Article  PubMed  Google Scholar 

  17. Sheffield, J. M. & Barch, D. M. Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61, 108–120 (2016).

    Article  PubMed  Google Scholar 

  18. Rotarska-Jagiela, A. et al. Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr. Res. 117, 21–30 (2010).

    Article  PubMed  Google Scholar 

  19. Shukla, D. K. et al. Aberrant frontostriatal connectivity in negative symptoms of schizophrenia. Schizophr. Bull. 45, 1051–1059 (2019).

    Article  PubMed  Google Scholar 

  20. Brady, R. O. et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am. J. Psychiatry 176, 512–520 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, J. et al. Intrinsic connectivity patterns of task-defined brain networks allow individual prediction of cognitive symptom dimension of schizophrenia and are linked to molecular architecture. Biol. Psychiatry 89, 308–319 (2021).

    Article  PubMed  Google Scholar 

  22. Adhikari, B. M. et al. Functional network connectivity impairments and core cognitive deficits in schizophrenia. Hum. Brain Mapp. 40, 4593–4605 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adhikari, B. M. et al. Effects of ketamine and midazolam on resting state connectivity and comparison with ENIGMA connectivity deficit patterns in schizophrenia. Hum. Brain Mapp. 41, 767–778 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Harrison, P. J. Postmortem studies in schizophrenia. Dialogues Clin. Neurosci. 2, 349–357 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roeske, M. J., Konradi, C., Heckers, S. & Lewis, A. S. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol. Psychiatry 26, 3524–3535 (2021).

    Article  PubMed  Google Scholar 

  28. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calderon, D. et al. Inferring relevant cell types for complex traits by using single-cell gene expression. Am. J. Hum. Genet. 101, 686–699 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ruzicka, W. B. et al. Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience. Preprint at medRxiv https://doi.org/10.1101/2020.11.06.20225342 (2020).

  33. Räsänen, N., Tiihonen, J., Koskuvi, M., Lehtonen, Š. & Koistinaho, J. The iPSC perspective on schizophrenia. Trends Neurosci. 45, 8–26 (2022).

    Article  PubMed  Google Scholar 

  34. Sebastian, R., Song, Y. & Pak, C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr. Res. https://doi.org/10.1016/j.schres.2022.06.028 (2022).

  35. Notaras, M. et al. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol. Psychiatry 27, 1416–1434 (2022).

    Article  PubMed  Google Scholar 

  36. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aine, C. J. et al. Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinformatics 15, 343–364 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006).

    Article  Google Scholar 

  39. McCutcheon, R. A., Abi-Dargham, A. & Howes, O. D. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci. 42, 205–220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shepherd, G. M. G. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).

    Article  PubMed  Google Scholar 

  42. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  43. Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017).

    Article  PubMed  Google Scholar 

  44. Hong, S.-J. et al. Atypical functional connectome hierarchy in autism. Nat. Commun. 10, 1022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  46. Friston, K. J. & Frith, C. D. Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3, 89–97 (1995).

    PubMed  Google Scholar 

  47. Stephan, K. E., Baldeweg, T. & Friston, K. J. Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 59, 929–939 (2006).

    Article  PubMed  Google Scholar 

  48. Friston, K. J. The disconnection hypothesis. Schizophr. Res. 30, 115–125 (1998).

    Article  PubMed  Google Scholar 

  49. Friston, K., Brown, H. R., Siemerkus, J. & Stephan, K. E. The dysconnection hypothesis (2016). Schizophr. Res. 176, 83–94 (2016).

  50. Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D. & Evans, A. C. Detecting changes in nonisotropic images. Hum. Brain Mapp. 8, 98–101 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA 113, 7900–7905 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article  PubMed  Google Scholar 

  55. Kay, S. R., Fiszbein, A. & Opler, L. A. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

    Article  PubMed  Google Scholar 

  56. Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–310 (1986).

    Google Scholar 

  57. Hastie, T. & Tibshirani, R. Generalized additive models for medical research. Stat. Methods Med. Res. 4, 187–196 (1995).

    Article  PubMed  Google Scholar 

  58. Hastie, T. & Tibshirani, R. Generalized additive models: some applications. J. Am. Stat. Assoc. 82, 371–386 (1987).

    Article  Google Scholar 

  59. Varoquaux, G. et al. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage 145, 166–179 (2017).

    Article  PubMed  Google Scholar 

  60. Lindenmayer, J.-P., Bernstein-Hyman, R. & Grochowski, S. A new five factor model of schizophrenia. Psychiatr. Q. 65, 299–322 (1994).

    Article  PubMed  Google Scholar 

  61. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hooker, C. & Park, S. Emotion processing and its relationship to social functioning in schizophrenia patients. Psychiatry Res. 112, 41–50 (2002).

    Article  PubMed  Google Scholar 

  63. Lincoln, T. M., Mehl, S., Kesting, M.-L. & Rief, W. Negative symptoms and social cognition: identifying targets for psychological interventions. Schizophr. Bull. 37, S23–S32 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moura, B. M. et al. A network of psychopathological, cognitive, and motor symptoms in schizophrenia spectrum disorders. Schizophr. Bull. 47, 915–926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guillem, F., Rinaldi, M., Pampoulova, T. & Stip, E. The complex relationships between executive functions and positive symptoms in schizophrenia. Psychol. Med. 38, 853–860 (2008).

    Article  PubMed  Google Scholar 

  66. Koshiyama, D. et al. Hierarchical pathways from sensory processing to cognitive, clinical, and functional impairments in schizophrenia. Schizophr. Bull. 47, 373–385 (2021).

    Article  PubMed  Google Scholar 

  67. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  PubMed  Google Scholar 

  69. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  71. Anderson, K. M. et al. Convergent molecular, cellular, and cortical neuroimaging signatures of major depressive disorder. Proc. Natl Acad. Sci. USA 117, 25138–25149 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Trifu, S. C., Kohn, B., Vlasie, A. & Patrichi, B.-E. Genetics of schizophrenia (Review). Exp. Ther. Med. 20, 3462–3468 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. Gejman, P. V., Sanders, A. R. & Duan, J. The role of genetics in the etiology of schizophrenia. Psychiatr. Clin. North Am. 33, 35–66 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Krabbendam, L. & van Os, J. Schizophrenia and urbanicity: a major environmental influence—conditional on genetic risk. Schizophr. Bull. 31, 795–799 (2005).

    Article  PubMed  Google Scholar 

  76. Leeuw, C. A., de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. de Leeuw, C. A., Neale, B. M., Heskes, T. & Posthuma, D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 17, 353–364 (2016).

    Article  PubMed  Google Scholar 

  78. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Nath, M., Wong, T. P. & Srivastava, L. K. Neurodevelopmental insights into circuit dysconnectivity in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 104, 110047 (2021).

    Article  PubMed  Google Scholar 

  82. Heeger, D. J. & Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142–151 (2002).

    Article  PubMed  Google Scholar 

  83. Dienel, S. J., Schoonover, K. E. & Lewis, D. A. Cognitive dysfunction and prefrontal cortical circuit alterations in schizophrenia: developmental trajectories. Biol. Psychiatry 92, 450–459 (2022).

    Article  PubMed  Google Scholar 

  84. Lewis, D. A. & Sweet, R. A. Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J. Clin. Invest. 119, 706–716 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Howes, O. D. et al. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br. J. Psychiatry 191, s13–s18 (2007).

    Article  Google Scholar 

  86. Romme, I. A. C., de Reus, M. A., Ophoff, R. A., Kahn, R. S. & van den Heuvel, M. P. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol. Psychiatry 81, 495–502 (2017).

    Article  PubMed  Google Scholar 

  87. Lewis, D. A. Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues Clin. Neurosci. 11, 269–280 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tkachev, D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805 (2003).

    Article  PubMed  Google Scholar 

  89. Raabe, F. J. et al. Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophr. 4, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

    Article  PubMed  Google Scholar 

  91. Han, W. & Šestan, N. Cortical projection neurons: sprung from the same root. Neuron 80, 1103–1105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Michalski, J.-P. & Kothary, R. Oligodendrocytes in a nutshell. Front. Cell. Neurosci. 9, 340 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Hoz, L. & Simons, M. The emerging functions of oligodendrocytes in regulating neuronal network behaviour. Bioessays 37, 60–69 (2015).

    Article  PubMed  Google Scholar 

  95. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hof, P. R. et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol. Psychiatry 53, 1075–1085 (2003).

    Article  PubMed  Google Scholar 

  97. Windrem, M. S. et al. Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21, 195–208.e6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Aberg, K., Saetre, P., Jareborg, N. & Jazin, E. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc. Natl Acad. Sci. USA 103, 7482–7487 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee, J. H., Liu, Q. & Dadgar-Kiani, E. Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI. Science 378, 493–499 (2022).

    Article  PubMed  Google Scholar 

  101. Grimm, C. et al. Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia. Cell Rep. 37, 110161 (2021).

    Article  PubMed  Google Scholar 

  102. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Huber, L. et al. Layer-dependent functional connectivity methods. Prog. Neurobiol. 207, 101835 (2021).

    Article  PubMed  Google Scholar 

  104. Carbon, M. & Correll, C. U. Thinking and acting beyond the positive: the role of the cognitive and negative symptoms in schizophrenia. CNS Spectr. 19, 35–53 (2014).

    Article  Google Scholar 

  105. Kaar, S. J., Natesan, S., McCutcheon, R. & Howes, O. D. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 172, 107704 (2020).

    Article  PubMed  Google Scholar 

  106. Valiengo, L. et al. Efficacy and safety of transcranial direct current stimulation for treating negative symptoms in schizophrenia. JAMA Psychiatry 77, 121–129 (2020).

    Article  PubMed  Google Scholar 

  107. Kostova, R., Cecere, R., Thut, G. & Uhlhaas, P. J. Targeting cognition in schizophrenia through transcranial direct current stimulation: a systematic review and perspective. Schizophr. Res. 220, 300–310 (2020).

    Article  PubMed  Google Scholar 

  108. Koponen, L. M., Nieminen, J. O. & Ilmoniemi, R. J. Multi-locus transcranial magnetic stimulation-theory and implementation. Brain Stimul. 11, 849–855 (2018).

    Article  PubMed  Google Scholar 

  109. Aberra, A. S., Wang, B., Grill, W. M. & Peterchev, A. V. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul. 13, 175–189 (2020).

    Article  PubMed  Google Scholar 

  110. Qiu, Y. et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 378, 523–532 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Martins, D. et al. Imaging transcriptomics: convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep. 37, 110173 (2021).

    Article  PubMed  Google Scholar 

  112. Wood, D. et al. Harnessing modern web application technology to create intuitive and efficient data visualization and sharing tools. Front. Neuroinformatics 8, 71 (2014).

    Article  Google Scholar 

  113. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Xu, K., Liu, Y., Zhan, Y., Ren, J. & Jiang, T. BRANT: a versatile and extendable resting-state fMRI toolkit. Front. Neuroinformatics 12, 52 (2018).

    Article  Google Scholar 

  115. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

    Article  PubMed  Google Scholar 

  116. Fischl, B., Sereno, M. I., Tootell, R. B. H. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Liu, B. et al. Polygenic risk for schizophrenia influences cortical gyrification in 2 independent general populations. Schizophr. Bull. 43, 673–680 (2017).

    PubMed  Google Scholar 

  119. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  PubMed  Google Scholar 

  121. Thorisson, G. A., Smith, A. V., Krishnan, L. & Stein, L. D. The International HapMap Project web site. Genome Res. 15, 1592–1593 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    Article  PubMed  Google Scholar 

  123. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  125. Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).

    Article  PubMed  Google Scholar 

  126. Zhao, Y. et al. The development of cortical functional hierarchy is associated with the molecular organization of prenatal/postnatal periods. Cereb. Cortex https://doi.org/10.1093/cercor/bhac340 (2022).

  127. Langs, G., Golland, P. & Ghosh, S. S. Predicting activation across individuals with resting-state functional connectivity based multi-atlas label fusion. Med. Image Comput. Comput. Assist. Interv. 9350, 313–320 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Fan, L. et al. The human Brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).

    Article  PubMed  Google Scholar 

  131. Eilers, P. H. C. & Marx, B. D. Flexible smoothing with B-splines and penalties. Stat. Sci. 11, 89–121 (1996).

    Article  Google Scholar 

  132. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).

    Google Scholar 

  133. Poldrack, R. A. et al. Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput. Biol. 8, e1002707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wang, H.-T. et al. Neurocognitive patterns dissociating semantic processing from executive control are linked to more detailed off-task mental time travel. Sci. Rep. 10, 11904 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox. eLife 10, e72129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Arnatkevičiūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).

    Article  PubMed  Google Scholar 

  137. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Stuart, T. et al. Comprehensive INtegration of Single-cell Data. Cell 177, 1888–1902.e21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Skene, N. G. & Grant, S. G. N. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017).

    Article  PubMed  Google Scholar 

  143. Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Startup Funds of Beijing Normal University (to B.L.), the National Key Basic Research and Development Program (973) (grant 2011CB707800 to T.J.), the National Key Research and Development Plan (grant 2016YFC0904300 to B.L.), the Natural Science Foundation of China (grant 81771451 to B.L.; grant 82171543 to A.L.), the Science and Technology Innovation 2030—Brain Science and Brain-Inspired Intelligence Project of China (grant 2021ZD0200200 to T.J.).

Author information

Authors and Affiliations

Authors

Contributions

B.L. and T.J. led the project. B.L. and M.W. were responsible for the study concept and the design of the study. H.Y. and W.Y. provided crucial advice for the study. A.L. made substantial contributions to the paper and provided critical comments. M.W. and B.L. analyzed the data, created the figures and wrote the paper. Y.L., L.F., K.H., Y.S., Y.Z., J.L., X.T. and M.S. participated in discussions of the results and the paper. P.L., J.C., Y.C., Huaning Wang, W.L., Z.L., Y.Y., H.G., L. Lv, L. Lu, J.Y., Huiling Wang, H.Z., H. Wu, Y.N. and D.Z. contributed to the data acquisition.

Corresponding authors

Correspondence to Ang Li, Tianzi Jiang or Bing Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Marta Bosia, Katharina Schmack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Supra-threshold permutation test based on cluster size (10,000 iterations, cluster defining threshold (cdt)=0.001).

Surface-based corticocortical and corticostriatal connectivity comparisons (based on a two-sample two-sided t-test) between patients with SCZ and NC, with multiple comparisons corrected using permutation-based cluster thresholding instead of random field theory (see Fig. 2a,c).

Extended Data Fig. 2 Nested 10-fold cross-validation process.

The procedure was applied for model training and selection in the SCZ-I dataset.

Extended Data Fig. 3 Comparisons of functional connectivity between high and low PANSS dimension subgroups.

a. Based on the negative dimension of the PANSS 5-factor model, the top and bottom 30% of SCZ patients (n = 513) from the combined SCZ-I and SCZ-II datasets were selected, forming two subgroups: N-high and N-low. The two subgroups were further screened using a two-sample t-test (two-sided) to ensure no differences in the other four PANSS dimensions. b. Corticocortical connectivity was compared between the N-high and N-low subgroups using the methodology in Fig. 1, resulting in a differential map, termed N-map. The N-map demonstrated a significant positive spatial correlation with the dysconnectivity t-map from the SCZ and NC group comparison (see Fig. 1). Mean connectivity scores from the ten dysconnectivity clusters (Fig. 2a) were significantly higher in the N-high subgroup. c. Corticostriatal connectivity was compared between the N-high and N-low subgroups. The corticostriatal N-map and dysconnectivity t-map displayed a significant positive spatial correlation. The absolute connectivity values from eight clusters (Fig. 2c) significantly decreased in the N-high subgroup. d-f. A similar analysis, like panels a-c, compared functional connectivity between high and low positive subgroups. The corticocortical P-map and dysconnectivity t-map showed no correlation, with no significant differences in connectivity strength (absolute value) of the ten clusters between P-high and P-low subgroups (e). However, a significant positive correlation was found between the corticostriatal P-map and dysconnectivity t-map, while the eight clusters’ connectivity strength significantly decreased in the P-high subgroup (f). g-i. Like panels a-c and d-f, functional connectivity differences were examined between the high and low cognitive subgroups. Significant differences were found in corticocortical connectivity for C-high and C-low subgroups, while corticostriatal connectivity showed no significant differences. Spatial correlations between maps were quantified using two-sided Pearson’s r. The significance (Pspin) was determined using the spin-based permutation test. Connectivity strength differences were measured using the two-sample t-test (two-sided). The error bars represent mean values ± 95% confidence interval. The box plot presents minimum, 25th percentile, median, 75th percentile, and maximum values (excluding outliers) for the combined high and low groups.

Extended Data Fig. 4 Functional decodings of corticocortical and corticostriatal dysconnectivity.

The spatial correlations (two-sided Pearson’s r) between t-maps and 24 predefined topic maps (each is composed of related terms) from the Neurosynth database were calculated. The significance (Pperm) was estimated using permutation tests. The warm or cool color indicates a positive or negative correlation, respectively. Only significant correlations (Pperm<0.05) are shown with colors, and darker colors indicate a higher significance. The face/affective processing map (the label is marked in bold and surrounded by a red box) is significantly, positively, and consistently correlated with corticocortical dysconnectivity t-maps across three datasets (a). There were three cognitive maps (pain, cued attention, and inhibition error) that were significantly, negatively, and consistently correlated with corticostriatal dysconnectivity t-maps across three datasets (b).

Extended Data Fig. 5 Cell enrichment of individual dysconnectivity.

a, c, e, g, The line graphs illustrate individual-level enrichment scores (NESs) of Lake and ABA cells for corticocortical and corticostriatal dysconnectivity. The participants were derived from the SCZ-I, SCZ-II, and COBRE datasets (total SCZ/NC=585/614). The error bars represent mean values ± 95% confidence interval. b, d, f, h, The heatmaps show pairwise comparisons of individual NES scores within the SCZ group (n = 585), using a two-sample t-test (two-sided). Blank squares indicate no significant differences between cells.

Extended Data Fig. 6 Cell enrichment comparisons of dysconnectivity transcriptional correlates between SCZ and MDD.

a, b, Cortical renderings show corticocortical (a) and corticostriatal (b) connectivity differences (t-maps) between patients with MDD and NC in the MDD-XX dataset (MDD, n = 75; NC, n = 74). The MDD dysconnectivity t-maps were obtained by applying the same analytical method as in Fig. 1. The warm or cool color indicates connectivity is increased or decreased in MDD. c. Cell enrichment of MDD dysconnectivity transcriptional correlates was conducted as with SCZ in Fig. 3. MDD corticocortical dysconnectivity transcriptional correlated genes were most significantly positively enriched in In6 and negatively enriched in Ast. The positively and negatively enriched cells with the most significance for MDD corticostriatal dysconnectivity were Ex3 and Ast, respectively. The solid circles with warm or cool colors indicate positive or negative enrichment, determined by NES. Darker colors mean greater NES. The radius is quantified by -log10(adjusted P value) (two-sided, FDR correction). Larger circles mean more significance of enrichment. NS, non-significant. NES, normalized enrichment score.

Extended Data Fig. 7 Gene Ontology enrichment of dysconnectivity transcriptional correlates.

Metascape enrichment networks show inter-cluster and intra-cluster similarities of enriched biological process terms. Each term is characterized by a circle node, where its size represents the significance level of enrichment, and its color denotes cluster identity (nodes with the same color belong to the same cluster). For each kind of dysconnectivity, a sorted gene list (in descending order) was obtained based on averaged spatial correlations between all AHBA genes and dysconnectivity t-maps. The gene list was then split into deciles. Enrichment analyses were separately conducted for the top and bottom gene deciles.

Extended Data Fig. 8 Cell enrichment of SCZ GWAS based on LDSC method.

Vertical bar plots show Lake (a) and ABA (b) cells enrichment of polygenic risk in SCZ from GWAS data. Cell-specific genes were defined using Lake data from the dorsal frontal cortex (DFC) and visual cortex (VIS), and ABA data from the middle temporal gyrus (MTG). The dashed line indicates unadjusted P < 0.05.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Tables 1–42.

Reporting Summary

Supplementary Data

Detailed statistical results that are not appropriate for inclusion in the Supplementary Information file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yan, H., Tian, X. et al. Neuroimaging and multiomics reveal cross-scale circuit abnormalities in schizophrenia. Nat. Mental Health 1, 633–654 (2023). https://doi.org/10.1038/s44220-023-00110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00110-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing