Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precision behavioral phenotyping as a strategy for uncovering the biological correlates of psychopathology

Abstract

Our capacity to measure diverse aspects of human biology has developed rapidly in the past decades, but the rate at which these techniques have generated insights into the biological correlates of psychopathology has lagged far behind. The slow progress is partly due to the poor sensitivity, specificity and replicability of many findings in the literature, which have in turn been attributed to small effect sizes, small sample sizes and inadequate statistical power. A commonly proposed solution is to focus on large, consortia-sized samples. Yet it is abundantly clear that increasing sample sizes will have a limited impact unless a more fundamental issue is addressed: the precision with which target behavioral phenotypes are measured. Here, we discuss challenges, outline several ways forward and provide worked examples to demonstrate key problems and potential solutions. A precision phenotyping approach can enhance the discovery and replicability of associations between biology and psychopathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The HiTOP model.
Fig. 2: The reflective latent variable model.
Fig. 3: Precision psychiatric phenotyping.

Similar content being viewed by others

References

  1. Perkins, E. R., Latzman, R. D. & Patrick, C. J. Interfacing neural constructs with the Hierarchical Taxonomy of Psychopathology: ‘why’ and ‘how’. Personal. Ment. Health 14, 106–122 (2020).

    Article  PubMed  Google Scholar 

  2. Insel, T. et al. Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  3. Hyman, S. E. Can neuroscience be integrated into the DSM-V? Nat. Rev. Neurosci. 8, 725–732 (2007).

    Article  PubMed  Google Scholar 

  4. Singh, I. & Rose, N. Biomarkers in psychiatry. Nature 460, 202–207 (2009).

    Article  PubMed  Google Scholar 

  5. First, M. B. et al. Clinical applications of neuroimaging in psychiatric disorders. Am. J. Psychiatry 175, 915–916 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saggar, M. & Uddin, L. Q. Pushing the boundaries of psychiatric neuroimaging to ground diagnosis in biology. eNeuro https://doi.org/10.1523/eneuro.0384-19.2019 (2019).

  9. Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).

    Article  PubMed  Google Scholar 

  10. Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2019).

    Article  PubMed  Google Scholar 

  11. Nour, M. M., Liu, Y. & Dolan, R. J. Functional neuroimaging in psychiatry and the case for failing better. Neuron 110, 2524–2544 (2022).

    Article  PubMed  Google Scholar 

  12. Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27 (2018).

    Article  PubMed  Google Scholar 

  13. Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M. & Bandettini, P. A. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage 60, 1759–1770 (2012).

    Article  PubMed  Google Scholar 

  14. Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage 171, 415–436 (2018).

    Article  PubMed  Google Scholar 

  15. Kong, R. et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and ranslation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    Article  PubMed  Google Scholar 

  18. Lilienfeld, S. O. The Research Domain Criteria (RDoC): an analysis of methodological and conceptual challenges. Behav. Res. Ther. 62, 129–139 (2014).

    Article  PubMed  Google Scholar 

  19. Xing, X.-X. & Zuo, X.-N. The anatomy of reliability: a must read for future human brain mapping. Sci. Bull. 63, 1606–1607 (2018).

    Article  Google Scholar 

  20. Zuo, X. N., Xu, T. & Milham, M. P. Harnessing reliability for neuroscience research. Nat. Hum. Behav. 3, 768–771 (2019).

    Article  PubMed  Google Scholar 

  21. Nikolaidis, A. et al. Suboptimal phenotypic reliability impedes reproducible human neuroscience. Preprint at bioRxiv https://doi.org/10.1101/2022.07.22.501193 (2022).

  22. Falk, E. B. et al. What is a representative brain? Neuroscience meets population science. Proc. Natl. Acad. Sci. USA 110, 17615–17622 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Markon, K. E., Chmielewski, M. & Miller, C. J. The reliability and validity of discrete and continuous measures of psychopathology: a quantitative review. Psychol. Bull. 137, 856–879 (2011).

    Article  PubMed  Google Scholar 

  24. van der Sluis, S., Posthuma, D., Nivard, M. G., Verhage, M. & Dolan, C. V. Power in GWAS: lifting the curse of the clinical cut-off. Mol. Psychiatry 18, 2–3 (2013).

    Article  PubMed  Google Scholar 

  25. Fisher, J. E., Guha, A., Heller, W. & Miller, G. A. Extreme-groups designs in studies of dimensional phenomena: Advantages, caveats, and recommendations. J. Abnorm. Psychol. 129, 14–20 (2020).

    Article  PubMed  Google Scholar 

  26. Angold, A., Costello, E. J., Farmer, E. M. Z., Burns, B. J. & Erkanli, A. Impaired but undiagnosed. J. Am. Acad. Child Adolesc. Psychiatry 38, 129–137 (1999).

    Article  PubMed  Google Scholar 

  27. Preacher, K. J. in Extreme Groups Designs in the Encyclopedia of Clinical Psychology Vol. 2 (eds. Cautin, R. L. & Lilienfeld, S. O.) 1189–1192 (John Wiley and Sons, 2015).

  28. Dong, H.-M. et al. Charting brain growth in tandem with brain templates at school age. Sci. Bull. 65, 1924–1934 (2020).

    Article  Google Scholar 

  29. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, S. et al. Chinese color nest project: an accelerated longitudinal brain-mind cohort. Dev. Cogn. Neurosci. 52, 101020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tobe, R. H. et al. A longitudinal resource for studying connectome development and its psychiatric associations during childhood. Sci. Data 9, 300 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sanchez-Roige, S. & Palmer, A. A. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat. Neurosci. 23, 475–480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Newson, J. J., Hunter, D. & Thiagarajan, T. C. The heterogeneity of mental health assessment. Front. Psychiatry https://doi.org/10.3389/fpsyt.2020.00076 (2020).

  34. Feczko, E. et al. The heterogeneity problem: approaches to identify psychiatric subtypes. Trends Cogn. Sci. 23, 584–601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schnack, H. G. & Kahn, R. S. Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters. Front. Psychiatry 7, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang, Z. et al. Brain network informed subject community detection in early-onset schizophrenia. Sci. Rep. 4, 5549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hodgson, K., McGuffin, P. & Lewis, C. M. Advancing psychiatric genetics through dissecting heterogeneity. Hum. Mol. Genet. 26, R160–R165 (2017).

    Article  PubMed  Google Scholar 

  38. De Nadai, A. S., Hu, Y. & Thompson, W. K. Data pollution in neuropsychiatry—an under-recognized but critical barrier to research progress. JAMA Psychiatry 79, 97–98 (2022).

    Article  PubMed  Google Scholar 

  39. Reise, S. P., Bonifay, W. E. & Haviland, M. G. Scoring and modeling psychological measures in the presence of multidimensionality. J. Pers. Assess. 95, 129–140 (2013).

    Article  PubMed  Google Scholar 

  40. van der Sluis, S., Verhage, M., Posthuma, D. & Dolan, C. V. Phenotypic complexity, measurement bias, and poor phenotypic resolution contribute to the missing heritability problem in genetic association studies. PLoS ONE 5, e13929 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Caspi, A. & Moffitt, T. E. All for one and one for all: mental disorders in one dimension. Am. J. Psychiatry 175, 831–844 (2018).

  42. Kotov, R. et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): a quantitative nosology based on consensus of evidence. Annu. Rev. Clin. Psychol. 17, 83–108 (2021).

    Article  PubMed  Google Scholar 

  43. Clark, L. A. & Watson, D. Constructing validity: new developments in creating objective measuring instruments. Psychol. Assess. 31, 1412–1427 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reise, S. P. The rediscovery of bifactor measurement models. Multivariate Behav. Res. 47, 667–696 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reise, S. P. & Waller, N. G. Item response theory and clinical measurement. Annu. Rev. Clin. Psychol. 5, 27–48 (2009).

    Article  PubMed  Google Scholar 

  46. Rosopa, P. J., Schaffer, M. M. & Schroeder, A. N. Managing heteroscedasticity in general linear models. Psychol. Methods 18, 335–351 (2013).

    Article  PubMed  Google Scholar 

  47. Thomas, M. L. The value of item response theory in clinical assessment: a review. Assessment 18, 291–307 (2011).

    Article  PubMed  Google Scholar 

  48. Streiner, D. L. Starting at the beginning: an introduction to coefficient alpha and internal consistency. J. Pers. Assess. 80, 99–103 (2003).

    Article  PubMed  Google Scholar 

  49. Saccenti, E., Hendriks, M. H. W. B. & Smilde, A. K. Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models. Sci. Rep. 10, 438 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vandenberg, R. J. & Lance, C. E. A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 3, 4–70 (2000).

    Article  Google Scholar 

  51. Miettunen, J., Nordstrom, T., Kaakinen, M. & Ahmed, A. O. Latent variable mixture modeling in psychiatric research: a review and application. Psychol. Med. 46, 457–467 (2016).

    Article  PubMed  Google Scholar 

  52. Achenbach, T. M. The Achenbach System of Empirically Based Assessment (ASEBA): Development, Findings, Theory, and Applications (University of Vermont, Research Center for Children, Youth and Families, 2009).

  53. Kelly, E. L. Interpretation of Educational Measurements (World Book, 1927).

  54. Fried, E. I. Moving forward: how depression heterogeneity hinders progress in treatment and research. Expert Rev. Neurother. 17, 423–425 (2017).

    Article  PubMed  Google Scholar 

  55. Fried, E. I. & Nesse, R. M. Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 172, 96–102 (2015).

    Article  PubMed  Google Scholar 

  56. Wager, T. D. & Woo, C.-W. Imaging biomarkers and biotypes for depression. Nat. Med. 23, 16–17 (2017).

    Article  PubMed  Google Scholar 

  57. Fried, E. I. & Nesse, R. M. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 13, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kendler, K. S., Aggen, S. H. & Neale, M. C. Evidence for multiple genetic factors underlying DSM-IV criteria for major depression. JAMA Psychiatry 70, 599–607 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Podsakoff, P. M., MacKenzie, S. B., Lee, J. & Podsakoff, N. P. Common method biases in behavioral research: a critical review of the literature and recommended remedies. J. Appl. Psychol. 88, 879–903 (2003).

    Article  PubMed  Google Scholar 

  60. Podsakoff, P. M., MacKenzie, S. B. & Podsakoff, N. P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 63, 539–569 (2012).

    Article  PubMed  Google Scholar 

  61. Haslam, N., Holland, E. & Kuppens, P. Categories versus dimensions in personality and psychopathology: a quantitative review of taxometric research. Psychol. Med. 42, 903–920 (2012).

    Article  PubMed  Google Scholar 

  62. Plomin, R., Haworth, C. M. & Davis, O. S. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878 (2009).

    Article  PubMed  Google Scholar 

  63. Cuthbert, B. N. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13, 28–35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stanton, K., McDonnell, C. G., Hayden, E. P. & Watson, D. Transdiagnostic approaches to psychopathology measurement: Recommendations for measure selection, data analysis, and participant recruitment. J. Abnorm. Psychol. 129, 21–28 (2020).

    Article  PubMed  Google Scholar 

  65. Allen, N. et al. UK Biobank: current status and what it means for epidemiology. Health Policy Technol. 1, 123–126 (2012).

    Article  Google Scholar 

  66. Strauss, M. E. & Smith, G. T. Construct validity: advances in theory and methodology. Annu. Rev. Clin. Psychol. 5, 1–25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Karcher, N. R., Michelini, G., Kotov, R. & Barch, D. M. Associations between resting-state functional connectivity and a hierarchical dimensional structure of psychopathology in middle childhood. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 508–517 (2021).

    PubMed  Google Scholar 

  68. Tiego, J. et al. Dissecting schizotypy and its association with cognition and polygenic risk for schizophrenia in a nonclinical sample. Schizophr Bull. https://doi.org/10.1093/schbul/sbac016 (2023).

  69. Conway, C. C., Forbes, M. K. & South, S. C. A Hierarchical Taxonomy of Psychopathology (HiTOP) primer for mental health researchers. Clin. Psychol. Sci. https://doi.org/10.1177/21677026211017834 (2021).

  70. Yim, O. & Ramdeen, K. T. Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. Quant. Methods Psychol. 11, 8–21 (2015).

    Article  Google Scholar 

  71. Goldberg, L. R. Doing it all bass-ackwards: the development of hierarchical factor structures from the top down. J. Res. Pers. 40, 347–358 (2006).

    Article  Google Scholar 

  72. Michelini, G. et al. Delineating and validating higher-order dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) study. Transl. Psychiatry 9, 261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Simms, L. J. et al. Computerized adaptive assessment of personality disorder: introducing the CAT–PD project. J. Pers. Assess. 93, 380–389 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Greven, C. U., Buitelaar, J. K. & Salum, G. A. From positive psychology to psychopathology: the continuum of attention‐deficit hyperactivity disorder. J. Child Psychol. Psychiatry 59, 203–212 (2018).

    Article  PubMed  Google Scholar 

  75. Stark, S., Chernyshenko, O. S. & Drasgow, F. Detecting differential item functioning with confirmatory factor analysis and item response theory: toward a unified strategy. J. Appl. Psychol. 91, 1292–1306 (2006).

    Article  PubMed  Google Scholar 

  76. van de Schoot, R. et al. Facing off with Scylla and Charybdis: a comparison of scalar, partial, and the novel possibility of approximate measurement invariance. Front. Psychol. 4, 770 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Clark, S. L. et al. Models and strategies for factor mixture analysis: an example concerning the structure underlying psychological disorders. Struct. Equation Modell. 20, 681–703 (2013).

    Article  Google Scholar 

  78. Eid, M., Lischetzke, T., Nussbeck, F. W. & Trierweiler, L. I. Separating trait effects from trait-specific method effects in multitrait-multimethod models: a multiple-indicator CT-C(M-1) model. Psychol. Methods 8, 38–60 (2003).

    Article  PubMed  Google Scholar 

  79. Eid, M., Geiser, C. & Koch, T. Measuring method effects: from traditional to design-oriented approaches. Curr. Dir. Psychol. Sci. 25, 275–280 (2016).

    Article  Google Scholar 

  80. Aron, A. R. & Poldrack, R. A. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1285–1292 (2005).

    Article  PubMed  Google Scholar 

  81. Martinussen, R., Hayden, J., Hogg-Johnson, S. & Tannock, R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 44, 377–384 (2005).

    Article  PubMed  Google Scholar 

  82. DeVellis, R. F. Classical test theory. Med. Care 44, S50–S59 (2006).

    Article  PubMed  Google Scholar 

  83. Nunnally, J. C. & Bernstein, I. Psychometric Theory 3rd edn (McGraw-Hill, 1994).

  84. Antonakis, J., Bendahan, S., Jacquart, P. & Lalive, R. On making causal claims: a review and recommendations. Leadersh. Q. 21, 1086–1120 (2010).

    Article  Google Scholar 

  85. Kendell, R. & Jablensky, R. Distinguishing between the validity and utility of psychiatric diagnoses. Am. J. Psychiatry 160, 4–12 (2003).

    Article  PubMed  Google Scholar 

  86. Kendler, K. S. The phenomenology of major depression and the representativeness and nature of DSM criteria. Am. J. Psychiatry 173, 771–780 (2016).

    Article  PubMed  Google Scholar 

  87. Kotov, R., Ruggero, C. J., Krueger, R. F., Watson, D. & Zimmerman, M. The perils of hierarchical exclusion rules: a further word of caution. Depress. Anxiety 35, 903–904 (2018).

    Article  PubMed  Google Scholar 

  88. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Allsopp, K., Read, J., Corcoran, R. & Kinderman, P. Heterogeneity in psychiatric diagnostic classification. Psychiatry Res. 279, 15–22 (2019).

    Article  PubMed  Google Scholar 

  90. Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Simms, L. J. et al. Development of measures for the hierarchical taxonomy of psychopathology (HiTOP): a collaborative scale development project. Assessment 29, 3–16 (2021).

  92. HiTOP Friendly Measures. HiTOP Clinical Network https://hitop.unt.edu/clinical-tools/hitop-friendly-measures (accessed 1 October 2022).

  93. Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D. & Zald, D. H. A hierarchical causal taxonomy of psychopathology across the life span. Psychol. Bull. 143, 142–186 (2017).

    Article  PubMed  Google Scholar 

  94. Michelini, G., Palumbo, I. M., DeYoung, C. G., Latzman, R. D. & Kotov, R. Linking RDoC and HiTOP: a new interface for advancing psychiatric nosology and neuroscience. Clin. Psychol. Rev. 86, 102025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis 7th edn (Pearson Education, 2014).

  96. Grice, J. W. Computing and evaluating factor scores. Psychol. Methods 6, 430–450 (2001).

    Article  PubMed  Google Scholar 

  97. Devlieger, I., Mayer, A. & Rosseel, Y. Hypothesis testing using factor score regression: a comparison of four methods. Educ. Psychol. Meas. 76, 741–770 (2016).

    Article  PubMed  Google Scholar 

  98. Kim, J., Zhu, W., Chang, L., Bentler, P. M. & Ernst, T. Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Hum. Brain Mapp. 28, 85–93 (2007).

    Article  PubMed  Google Scholar 

  99. Kline, R. B. Principles and Practice of Structural Equation Modeling 4th edn (Guilford, 2015).

  100. Reise, S. P. & Rodriguez, A. Item response theory and the measurement of psychiatric constructs: some empirical and conceptual issues and challenges. Psychol. Med. 46, 2025–2039 (2016).

    Article  PubMed  Google Scholar 

  101. de Ayala, R. J. The Theory and Practice of Item Response Theory (Guilford, 2009).

Download references

Acknowledgements

J.T. was supported by a Turner impact fellowship from the Turner Institute for Brain and Mental Health, Monash University, Australia. A.F. was supported by the Sylvia and Charles Viertel Foundation, the National Health and Medical Research Council (grant numbers: 1146292 and 1197431) and the Australian Research Council (grant number: DP200103509). A.J.S. was supported by the National Institute of Mental Health (grant numbers: AA030042, MH131264 and MH121409) and the University of Maryland.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jeggan Tiego.

Peer review

Peer review information

Nature Mental Health thanks Xi-Nian Zuo, Terrie Moffitt and Gregory Miller for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information, tables and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiego, J., Martin, E.A., DeYoung, C.G. et al. Precision behavioral phenotyping as a strategy for uncovering the biological correlates of psychopathology. Nat. Mental Health 1, 304–315 (2023). https://doi.org/10.1038/s44220-023-00057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00057-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing