Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dimensional and transdiagnostic phenotypes in psychiatric genome-wide association studies

Abstract

Genome-wide association studies (GWAS) provide biological insights into disease onset and progression and have potential to produce clinically useful biomarkers. A growing body of GWAS focuses on quantitative and transdiagnostic phenotypic targets, such as symptom severity or biological markers, to enhance gene discovery and the translational utility of genetic findings. The current review discusses such phenotypic approaches in GWAS across major psychiatric disorders. We identify themes and recommendations that emerge from the literature to date, including issues of sample size, reliability, convergent validity, sources of phenotypic information, phenotypes based on biological and behavioral markers such as neuroimaging and chronotype, and longitudinal phenotypes. We also discuss insights from multi-trait methods such as genomic structural equation modelling. These provide insight into how hierarchical ‘splitting’ and ‘lumping’ approaches can be applied to both diagnostic and dimensional phenotypes to model clinical heterogeneity and comorbidity. Overall, dimensional and transdiagnostic phenotypes have enhanced gene discovery in many psychiatric conditions and promises to yield fruitful GWAS targets in the years to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dimensional and transdiagnostic GWAS phenotypes across the lifespan.
Fig. 2: “Lumping” and “Splitting” of dimensional GWAS phenotypes.

Similar content being viewed by others

Data availability

No empirical data was generated in this literature review. GWAS summary statistics used in Table 1 can be downloaded from the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/results-and-downloads/), dbGaP (accession number phs001672.v10.p1.), and Edinburgh DataShare (https://datashare.ed.ac.uk/handle/10283/3203).

References

  1. Sullivan PF, Kendler KS. The state of the science in psychiatric genomics. Psychological Med. 2021;51:2145–7.

    Google Scholar 

  2. Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177:162–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, et al. Psychiatric genomics: an update and an agenda. Am J Psychiatry. 2018;175:15–27.

    PubMed  Google Scholar 

  4. Smoller JW, Andreassen OA, Edenberg HJ, Faraone SV, Glatt SJ, Kendler KS. Psychiatric genetics and the structure of psychopathology. Mol psychiatry. 2019;24:409–20.

    PubMed  Google Scholar 

  5. Duncan LE, Ostacher M, Ballon J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology. 2019;44:1518–23.

    PubMed  PubMed Central  Google Scholar 

  6. Lee PH, Anttila V, Won H, Feng Y-CA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–82.e1411.

    Google Scholar 

  7. Abdellaoui A, Yengo L, Verweij KJ, Visscher PM. 15 years of GWAS discovery: Realizing the promise. Am J Hum Genet. 2023;110:179–94.

  8. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ioannidis JP, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. Am J Epidemiol. 2006;164:609–14.

    PubMed  Google Scholar 

  11. Button KS, Ioannidis J, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Confidence and precision increase with high statistical power. Nat Rev Neurosci. 2013;14:585.

    CAS  PubMed  Google Scholar 

  12. Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019;10:1–11.

    Google Scholar 

  13. Coleman JR. The validity of brief phenotyping in population biobanks for psychiatric genome-wide association studies on the biobank scale. Complex psychiatry. 2021;7:11–15.

    PubMed  PubMed Central  Google Scholar 

  14. Wright AG, Levinson CA, Crowell SE. Characterizing and Coding Psychiatric Diagnoses Using Electronic Health Record Data. JAMA psychiatry 2022;79:1139.

  15. Mullins-Sweatt SN, Erin Dainer M, Brady D, Jonathan R, Skyler T, Kotov R, et al. HiTOP Digital Assessment and Tracker (HiTOP-DAT) Manual.

  16. Simms LJ, Wright AG, Cicero D, Kotov R, Mullins-Sweatt SN, Sellbom M, et al. Development of measures for the Hierarchical Taxonomy of Psychopathology (HiTOP): a collaborative scale development project. Assessment. 2022;29:3–16.

    PubMed  Google Scholar 

  17. Kotov R, Cicero DC, Conway CC, DeYoung CG, Dombrovski A, Eaton NR, et al. The Hierarchical Taxonomy of Psychopathology (HiTOP) in psychiatric practice and research. Psychol Med. 2022;52:1666–78.

  18. Babcock B, Weiss DJ. Termination criteria in computerized adaptive tests: Do variable-length CATs provide efficient and effective measurement? J Computerized Adapt Test. 2013;1:1–18.

    Google Scholar 

  19. Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain imaging Behav. 2014;8:153–82.

    PubMed  PubMed Central  Google Scholar 

  20. Medland SE, Grasby KL, Jahanshad N, Painter JN, Colodro‐Conde L, Bralten J, et al. Ten years of enhancing neuro‐imaging genetics through meta‐analysis: An overview from the ENIGMA Genetics Working Group. Hum Brain Mapp. 2022;43:292–9.

    PubMed  Google Scholar 

  21. Okbay A, Baselmans BM, De Neve J-E, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet. 2016;48:624–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Plomin R, Haworth CM, Davis OS. Common disorders are quantitative traits. Nat Rev Genet. 2009;10:872–8.

    CAS  PubMed  Google Scholar 

  23. Gottesman II, Shields J. A polygenic theory of schizophrenia. Int J Ment Health. 1972;1:107–15.

    Google Scholar 

  24. Cohen J. The cost of dichotomization. Appl psychological Meas. 1983;7:249–53.

    Google Scholar 

  25. MacCallum RC, Zhang S, Preacher KJ, Rucker DD. On the practice of dichotomization of quantitative variables. Psychological methods. 2002;7:19.

    PubMed  Google Scholar 

  26. Yang J, Wray NR, Visscher PM. Comparing apples and oranges: equating the power of case‐control and quantitative trait association studies. Genet Epidemiol: Off Publ Int Genet Epidemiol Soc. 2010;34:254–7.

    Google Scholar 

  27. Andreasen NC. Negative symptoms in schizophrenia: definition and reliability. Arch Gen psychiatry. 1982;39:784–8.

    CAS  PubMed  Google Scholar 

  28. Regier DA, Narrow WE, Clarke DE, Kraemer HC, Kuramoto SJ, Kuhl EA, et al. DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses. Am J psychiatry. 2013;170:59–70.

    PubMed  Google Scholar 

  29. Trajković G, Starčević V, Latas M, Leštarević M, Ille T, Bukumirić Z, et al. Reliability of the Hamilton Rating Scale for Depression: a meta-analysis over a period of 49 years. Psychiatry Res. 2011;189:1–9.

    PubMed  Google Scholar 

  30. Wray NR, Gottesman II. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front Genet. 2012;3:118.

    PubMed  PubMed Central  Google Scholar 

  31. Stein MB, Levey DF, Cheng Z, Wendt FR, Harrington K, Pathak GA, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat Genet. 2021;53:174–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maihofer AX, Choi KW, Coleman JR, Daskalakis NP, Denckla CA, Ketema E, et al. Enhancing discovery of genetic variants for posttraumatic stress disorder through integration of quantitative phenotypes and trauma exposure information. Biol psychiatry. 2022;91:626–36.

    PubMed  Google Scholar 

  33. Levey DF, Gelernter J, Polimanti R, Zhou H, Cheng Z, Aslan M, et al. Reproducible genetic risk loci for anxiety: results from 200,000 participants in the Million Veteran Program. Am J Psychiatry. 2020;177:223–32.

    PubMed  PubMed Central  Google Scholar 

  34. Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in> 1.2 million individuals highlight new therapeutic directions. Nat Neurosci. 2021;24:954–64.

  35. Schwabe I, Milaneschi Y, Gerring Z, Sullivan P, Schulte E, Suppli N, et al. Unraveling the genetic architecture of major depressive disorder: merits and pitfalls of the approaches used in genome-wide association studies. Psychological Med. 2019;49:2646–56.

    CAS  Google Scholar 

  36. Jermy BS, Glanville KP, Coleman JR, Lewis CM, Vassos E. Exploring the genetic heterogeneity in major depression across diagnostic criteria. Mol psychiatry. 2021;26:7337–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Young R, Biggs J, Ziegler V, Meyer D. Young mania rating scale. J Affective Disord. 2000.

  38. Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL. 23andMe Research Team tSUDWGotPGC, Adams MJ, et al. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am J Psychiatry. 2019;176:107–18.

    PubMed  Google Scholar 

  39. Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen C-Y, Choi KW, et al. International meta-analysis of PTSD genome-wide association studies identifies sex-and ancestry-specific genetic risk loci. Nat Commun. 2019;10:1–16.

    CAS  Google Scholar 

  40. Zhou H, Sealock JM, Sanchez-Roige S, Clarke T-K, Levey DF, Cheng Z, et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat Neurosci. 2020;23:809–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke T-K, Shirali M, et al. Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet. 2018;50:6–11.

    CAS  PubMed  Google Scholar 

  42. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai N, Revez JA, Adams MJ, Andlauer TF, Breen G, Byrne EM, et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat Genet. 2020;52:437–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Roige S, Palmer AA. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat Neurosci. 2020;23:475–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saunders JB, Aasland OG, Babor TF, De la Fuente JR, Grant M. Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption‐II. Addiction. 1993;88:791–804.

    CAS  PubMed  Google Scholar 

  46. Mallard TT, Savage JE, Johnson EC, Huang Y, Edwards AC, Hottenga JJ, et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am J Psychiatry. 2022;179:58–70.

    PubMed  Google Scholar 

  47. Pain O, Dudbridge F, Cardno AG, Freeman D, Lu Y, Lundstrom S, et al. Genome‐wide analysis of adolescent psychotic‐like experiences shows genetic overlap with psychiatric disorders. Am J Med Genet Part B: Neuropsychiatr Genet. 2018;177:416–25.

    CAS  Google Scholar 

  48. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JR, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kotov R, Jonas KG, Carpenter WT, Dretsch MN, Eaton NR, Forbes MK, et al. Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): I. Psychosis superspectrum. World Psychiatry. 2020;19:151–72.

    PubMed  PubMed Central  Google Scholar 

  50. Legge SE, Jones HJ, Kendall KM, Pardiñas AF, Menzies G, Bracher-Smith M, et al. Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits. JAMA psychiatry. 2019;76:1256–65.

    PubMed  PubMed Central  Google Scholar 

  51. Jami ES, Hammerschlag AR, Ip HF, Allegrini AG, Benyamin B, Border R, et al. Genome-wide association meta-analysis of childhood and adolescent internalising symptoms. MedRxiv 2021: 2020.2009. 2011.20175026.

  52. Carlson EN, Vazire S, Oltmanns TF. Self‐other knowledge asymmetries in personality pathology. J Personal. 2013;81:155–70.

    Google Scholar 

  53. Vazire S. Who knows what about a person? The self–other knowledge asymmetry (SOKA) model. J Personal Soc Psychol. 2010;98:281.

    Google Scholar 

  54. Jones S, Miller JD. Psychopathic traits and externalizing behaviors: a comparison of self-and informant reports in the statistical prediction of externalizing behaviors. Psychological Assess. 2012;24:255.

    Google Scholar 

  55. Kelley SE, Edens JF, Donnellan MB, Mowle EN, Sörman K. Self‐and informant perceptions of psychopathic traits in relation to the triarchic model. J Personal. 2018;86:738–51.

    Google Scholar 

  56. Oltmanns TF, Turkheimer E. Perceptions of self and others regarding pathological personality traits. Personality Psychopathol. 2006: 71–111.

  57. Merwood A, Greven C, Price T, Rijsdijk F, Kuntsi J, McLoughlin G, et al. Different heritabilities but shared etiological influences for parent, teacher and self-ratings of ADHD symptoms: an adolescent twin study. Psychological Med. 2013;43:1973–84.

    CAS  Google Scholar 

  58. Bartels M, Boomsma DI, Hudziak JJ, van Beijsterveldt TC, van den Oord EJ. Twins and the study of rater (dis) agreement. Psychological Methods. 2007;12:451.

    PubMed  Google Scholar 

  59. Allegrini AG, Cheesman R, Rimfeld K, Selzam S, Pingault JB, Eley TC, et al. The p factor: genetic analyses support a general dimension of psychopathology in childhood and adolescence. J Child Psychol Psychiatry. 2020;61:30–39.

    PubMed  Google Scholar 

  60. Ip HF, Van der Laan CM, Krapohl EM, Brikell I, Sánchez-Mora C, Nolte IM, et al. Genetic association study of childhood aggression across raters, instruments, and age. Transl psychiatry. 2021;11:1–9.

    Google Scholar 

  61. Cheesman R, Purves KL, Pingault J-B, Breen G, Plomin R, Eley TC. Extracting stability increases the SNP heritability of emotional problems in young people. Transl psychiatry. 2018;8:1–9.

    CAS  Google Scholar 

  62. Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry. 2003;160:636–45.

    PubMed  Google Scholar 

  63. Flint J, Munafò MR. The endophenotype concept in psychiatric genetics. Psychological Med. 2007;37:163–80.

    Google Scholar 

  64. Matoba N, Love MI, Stein JL. Evaluating brain structure traits as endophenotypes using polygenicity and discoverability. Hum Brain Mapp. 2022;43:329–40.

    PubMed  Google Scholar 

  65. Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, Polderman TJ, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51:1339–48.

    CAS  PubMed  Google Scholar 

  66. Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 2017;133:839–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jian X, Fornage M. Imaging endophenotypes of stroke as a target for genetic studies. Stroke. 2018;49:1557–62.

    PubMed  PubMed Central  Google Scholar 

  68. Torres-Aguila NP, Carrera C, Giese A-K, Cullell N, Muiño E, Cárcel-Márquez J, et al. Genome-wide association study of white blood cell counts in patients with ischemic stroke. Stroke. 2019;50:3618–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, et al. Genome-wide association of endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia (COGS) study. JAMA psychiatry. 2019;76:1274–84.

    PubMed  PubMed Central  Google Scholar 

  70. Meyers J, Zhang J, Wang J, Su J, Kuo S, Kapoor M, et al. An endophenotype approach to the genetics of alcohol dependence: a genome wide association study of fast beta EEG in families of African ancestry. Mol psychiatry. 2017;22:1767–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. O’Loughlin J, Casanova F, Jones SE, Hagenaars SP, Beaumont RN, Freathy RM, et al. Using Mendelian Randomisation methods to understand whether diurnal preference is causally related to mental health. Mol psychiatry. 2021;26:6305–16.

    PubMed  PubMed Central  Google Scholar 

  72. Buchwald J, Chenoweth MJ, Palviainen T, Zhu G, Benner C, Gordon S, et al. Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent. Mol psychiatry. 2021;26:2212–23.

    CAS  PubMed  Google Scholar 

  73. Ware JJ, Chen X, Vink J, Loukola A, Minica C, Pool R, et al. Genome-wide meta-analysis of cotinine levels in cigarette smokers identifies locus at 4q13. 2. Sci Rep. 2016;6:1–7.

    Google Scholar 

  74. Linnér RK, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet. 2019;51:245–57.

    PubMed Central  Google Scholar 

  75. Strawbridge RJ, Ward J, Cullen B, Tunbridge EM, Hartz S, Bierut L, et al. Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort. Transl psychiatry. 2018;8:1–11.

    Google Scholar 

  76. Waszczuk MA, Miao J, Docherty AR, Shabalin AA, Jonas KG, Michelini G, et al. General v. specific vulnerabilities: Polygenic risk scores and higher-order psychopathology dimensions in the Adolescent Brain Cognitive Development (ABCD) Study. Psychol Med. 2023;53:1937–46.

  77. Aydogan G, Daviet R, Karlsson Linnér R, Hare TA, Kable JW, Kranzler HR, et al. Genetic underpinnings of risky behaviour relate to altered neuroanatomy. Nat Hum Behav. 2021;5:787–94.

    PubMed  PubMed Central  Google Scholar 

  78. Day FR, Ong KK, Perry JR. Elucidating the genetic basis of social interaction and isolation. Nat Commun. 2018;9:2457.

    PubMed  PubMed Central  Google Scholar 

  79. Gao J, Davis LK, Hart AB, Sanchez-Roige S, Han L, Cacioppo JT, et al. Genome-wide association study of loneliness demonstrates a role for common variation. Neuropsychopharmacology. 2017;42:811–21.

    CAS  PubMed  Google Scholar 

  80. Song Z, Li W-D, Jin X, Ying J, Zhang X, Song Y, et al. Genetics, leadership position, and well-being: An investigation with a large-scale GWAS. Proc Natl Acad Sci. 2022;119:e2114271119.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lubke GH, Miller PJ, Verhulst B, Bartels M, van Beijsterveldt T, Willemsen G, et al. A powerful phenotype for gene‐finding studies derived from trajectory analyses of symptoms of anxiety and depression between age seven and 18. Am J Med Genet Part B: Neuropsychiatr Genet. 2016;171:948–57.

    Google Scholar 

  82. Zavos H, Gregory AM, Eley TC. Longitudinal genetic analysis of anxiety sensitivity. Developmental Psychol. 2012;48:204.

    Google Scholar 

  83. Jonas KG, Busso C, Lian W, Docherty AR, Shabalin AA, Carlson G, et al. Where is Mania in the Hierarchical Taxonomy of Psychopathology: Internalizing, Thought Disorder, or Novel Spectrum? PsyArXiv. 2023; psyarxiv.com/nrgav.

  84. Tozzi F, Prokopenko I, Perry J, Kennedy J, McCarthy A, Holsboer F, et al. Family history of depression is associated with younger age of onset in patients with recurrent depression. Psychological Med. 2008;38:641–9.

    CAS  Google Scholar 

  85. Pedersen EM, Agerbo E, Plana-Ripoll O, Grove J, Dreier JW, Musliner KL, et al. Accounting for age of onset and family history improves power in genome-wide association studies. Am J Hum Genet. 2022;109:417–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nguyen T-D, Harder A, Xiong Y, Kowalec K, Hägg S, Cai N, et al. Genetic heterogeneity and subtypes of major depression. Mol. Psychiatry 2022;27:1–9.

  87. Fabbri C, Hagenaars SP, John C, Williams AT, Shrine N, Moles L, et al. Genetic and clinical characteristics of treatment-resistant depression using primary care records in two UK cohorts. Mol Psychiatry 2021;26:1–11.

  88. Bergen SE, O’Dushlaine CT, Lee PH, Fanous AH, Ruderfer DM, Ripke S, et al. Genetic modifiers and subtypes in schizophrenia: investigations of age at onset, severity, sex and family history. Schizophrenia Res. 2014;154:48–53.

    Google Scholar 

  89. Watson HJ, Thornton LM, Yilmaz Z, Baker JH, Coleman JR, Adan RA, et al. Common genetic variation and age of onset of anorexia nervosa. Biol psychiatry Glob open Sci. 2022;2:368–78.

    PubMed  Google Scholar 

  90. Pardiñas AF, Smart SE, Willcocks IR, Holmans PA, Dennison CA, Lynham AJ, et al. Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA psychiatry. 2022;79:260–9.

    PubMed  Google Scholar 

  91. Tielbeek JJ, Uffelmann E, Williams BS, Colodro-Conde L, Gagnon E, Mallard TT, et al. Uncovering the genetic architecture of broad antisocial behavior through a genome-Wide association study meta-analysis. 2022;27:4453–63.

  92. Preacher KJ, Rucker DD, MacCallum RC, Nicewander WA. Use of the extreme groups approach: a critical reexamination and new recommendations. Psychological methods. 2005;10:178.

    PubMed  Google Scholar 

  93. Sher KJ, Trull TJ. Methodological issues in psychopathology research. Annu Rev Psychol. 1996;47:371.

    CAS  PubMed  Google Scholar 

  94. Uher R, Rutter M. Basing psychiatric classification on scientific foundation: problems and prospects. Int Rev Psychiatry. 2012;24:591–605.

    PubMed  Google Scholar 

  95. Kendler KS, Chatzinakos C, Bacanu SA. The impact on estimations of genetic correlations by the use of super‐normal, unscreened, and family‐history screened controls in genome wide case–control studies. Genet Epidemiol. 2020;44:283–9.

    PubMed  Google Scholar 

  96. Tyrrell J, Zheng J, Beaumont R, Hinton K, Richardson TG, Wood AR, et al. Genetic predictors of participation in optional components of UK Biobank. Nat Commun. 2021;12:886.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sarah H. B, Rapporteur KC, Asalone R, Wizemann TM, (eds). Improving Diversity of the Genomics Workforce. Proceedings of the Roundtable on Genomics and Precision Health. 2022.

  98. Beachy SH, Alper J, Addie S, Hackmann M. Exploring the Current Landscape of Consumer Genomics: Proceedings of a Workshop. 2020.

  99. Pirastu N, Cordioli M, Nandakumar P, Mignogna G, Abdellaoui A, Hollis B, et al. Genetic analyses identify widespread sex-differential participation bias. Nat Genet. 2021;53:663–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheverud JM. A comparison of genetic and phenotypic correlations. Evolution. 1988;42:958–68.

    PubMed  Google Scholar 

  101. Turkheimer E, Pettersson E, Horn EE. A phenotypic null hypothesis for the genetics of personality. Annu Rev Psychol. 2014;65:515–40.

    PubMed  Google Scholar 

  102. Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat Hum Behav. 2019;3:513–25.

    PubMed  PubMed Central  Google Scholar 

  103. Waldman ID, Poore HE, Luningham JM, Yang J. Testing structural models of psychopathology at the genomic level. World Psychiatry. 2020;19:350–9.

    PubMed  PubMed Central  Google Scholar 

  104. Lahey BB, Van Hulle CA, Singh AL, Waldman ID, Rathouz PJ. Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Arch Gen psychiatry. 2011;68:181–9.

    PubMed  PubMed Central  Google Scholar 

  105. Pettersson E, Larsson H, Lichtenstein P. Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. Mol psychiatry. 2016;21:717–21.

    CAS  PubMed  Google Scholar 

  106. Li JJ, He Q, Wang Z, Lu Q. Enhancing the Discriminatory Power of ADHD and Autism Spectrum Disorder Polygenic Scores in Clinical and Non-Clinical Samples. medRxiv 2022.

  107. Rijsdijk FV, Vernon P, Boomsma DI. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study. Behav Genet. 2002;32:199–210.

    PubMed  Google Scholar 

  108. Trampush JW, Yang MLZ, Yu J, Knowles E, Davies G, Liewald DC, et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol psychiatry. 2017;22:336–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N= 112 151). Mol psychiatry. 2016;21:758–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Waszczuk MA, Zavos HM, Gregory AM, Eley TC. The phenotypic and genetic structure of depression and anxiety disorder symptoms in childhood, adolescence, and young adulthood. JAMA psychiatry. 2014;71:905–16.

    PubMed  Google Scholar 

  111. Hettema JM, Prescott CA, Myers JM, Neale MC, Kendler KS. The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch Gen psychiatry. 2005;62:182–9.

    PubMed  Google Scholar 

  112. Eley TC, Bolton D, O’connor TG, Perrin S, Smith P, Plomin R. A twin study of anxiety‐related behaviours in pre‐school children. J Child Psychol Psychiatry. 2003;44:945–60.

    PubMed  Google Scholar 

  113. Eley TC. General genes: A new theme in developmental psychopathology. Curr Directions Psychological Sci. 1997;6:90–5.

    Google Scholar 

  114. Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol psychiatry. 2016;21:1391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Purves KL, Coleman JR, Meier SM, Rayner C, Davis KA, Cheesman R, et al. A major role for common genetic variation in anxiety disorders. Mol psychiatry. 2020;25:3292–303.

    CAS  PubMed  Google Scholar 

  116. Hettema JM, Verhulst B, Chatzinakos C, Bacanu SA, Chen CY, Ursano RJ, et al. Genome‐wide association study of shared liability to anxiety disorders in Army STARRS. Am J Med Genet Part B: Neuropsychiatr Genet. 2020;183:197–207.

    CAS  Google Scholar 

  117. Morneau‐Vaillancourt G, Coleman JR, Purves KL, Cheesman R, Rayner C, Breen G, et al. The genetic and environmental hierarchical structure of anxiety and depression in the UK Biobank. Depression anxiety. 2020;37:512–20.

    PubMed  Google Scholar 

  118. Frieden BR. Science from Fisher Information: A Unification. Cambridge University Press 2004.

  119. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lahey BB, Zald DH, Hakes JK, Krueger RF, Rathouz PJ. Patterns of heterotypic continuity associated with the cross-sectional correlational structure of prevalent mental disorders in adults. JAMA psychiatry. 2014;71:989–96.

    PubMed  PubMed Central  Google Scholar 

  121. Lahey BB, Krueger RF, Rathouz PJ, Waldman ID, Zald DH. A hierarchical causal taxonomy of psychopathology across the life span. Psychological Bull. 2017;143:142.

    Google Scholar 

  122. Ormel J, Raven D, van Oort F, Hartman C, Reijneveld S, Veenstra R, et al. Mental health in Dutch adolescents: a TRAILS report on prevalence, severity, age of onset, continuity and co-morbidity of DSM disorders. Psychological Med. 2015;45:345–60.

    CAS  Google Scholar 

  123. Herpertz-Dahlmann B, Dempfle A, Konrad K, Klasen F, Ravens-Sieberer U. Eating disorder symptoms do not just disappear: the implications of adolescent eating-disordered behaviour for body weight and mental health in young adulthood. Eur Child Adolesc Psychiatry. 2015;24:675–84.

    PubMed  Google Scholar 

  124. Caspi A, Houts RM, Ambler A, Danese A, Elliott ML, Hariri A, et al. Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin birth cohort study. JAMA Netw open. 2020;3:e203221.

    PubMed  PubMed Central  Google Scholar 

  125. Linnér KR, Mallard TT, Barr PB, Sanchez-Roige S, Madole JW, Driver MN, et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat Neurosci. 2021;24:1367–76.

    PubMed Central  Google Scholar 

  126. Kroenke K, Spitzer RL, Williams JB. The PHQ‐9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Thorp JG, Marees AT, Ong J-S, An J, MacGregor S, Derks EM. Genetic heterogeneity in self-reported depressive symptoms identified through genetic analyses of the PHQ-9. Psychological Med. 2020;50:2385–96.

    Google Scholar 

  128. Strom NI, Soda T, Mathews CA, Davis LK. A dimensional perspective on the genetics of obsessive-compulsive disorder. Transl Psychiatry. 2021;11:1–11.

    Google Scholar 

  129. Warrier V, Toro R, Won H, Leblond CS, Cliquet F, Delorme R, et al. Social and non-social autism symptoms and trait domains are genetically dissociable. Commun Biol. 2019;2:1–13.

    Google Scholar 

  130. Yousaf A, Waltes R, Haslinger D, Klauck SM, Duketis E, Sachse M, et al. Quantitative genome-wide association study of six phenotypic subdomains identifies novel genome-wide significant variants in autism spectrum disorder. Transl psychiatry. 2020;10:1–11.

    Google Scholar 

  131. Ward J, Lyall LM, Bethlehem RA, Ferguson A, Strawbridge RJ, Lyall DM, et al. Novel genome-wide associations for anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure. Transl psychiatry. 2019;9:1–9.

    CAS  Google Scholar 

  132. Docherty AR, Shabalin AA, DiBlasi E, Monson E, Mullins N, Adkins DE, et al. Genome-wide association study of suicide death and polygenic prediction of clinical antecedents. Am J psychiatry. 2020;177:917–27.

    PubMed  PubMed Central  Google Scholar 

  133. Hübel C, Abdulkadir M, Herle M, Loos RJ, Breen G, Bulik CM, et al. One size does not fit all. Genomics differentiates among anorexia nervosa, bulimia nervosa, and binge‐eating disorder. Int J Eat Disord. 2021;54:785–93.

    PubMed  PubMed Central  Google Scholar 

  134. Mundy J, Hübel C, Gelernter J, Levey D, Murray RM, Skelton M, et al. Psychological trauma and the genetic overlap between posttraumatic stress disorder and major depressive disorder. Psychol Med. 2021;52:1–10.

  135. Leifker FR, Bowie CR, Harvey PD. Determinants of everyday outcomes in schizophrenia: the influences of cognitive impairment, functional capacity, and symptoms. Schizophrenia Res. 2009;115:82–87.

    Google Scholar 

  136. Waszczuk MA, Eaton NR, Krueger RF, Shackman AJ, Waldman ID, Zald DH, et al. Redefining phenotypes to advance psychiatric genetics: Implications from hierarchical taxonomy of psychopathology. J Abnorm Psychol. 2020;129:143.

    PubMed  Google Scholar 

  137. Kotov R, Krueger RF, Watson D, Achenbach TM, Althoff RR, Bagby M, et al. The Hierarchical Taxonomy Of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. J Abnorm Psychol. 2017;126:454.

    PubMed  Google Scholar 

  138. Krueger RF, Kotov R, Watson D, Forbes MK, Eaton NR, Ruggero CJ, et al. Progress in achieving empirical classification of psychopathology. World Psychiatry. 2018;17:282–93.

  139. Watson D, Levin‐Aspenson HF, Waszczuk MA, Conway CC, Dalgleish T, Dretsch MN, et al. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): III. Emotional dysfunction superspectrum. World Psychiatry. 2022;21:26–54.

    PubMed  PubMed Central  Google Scholar 

  140. Krueger RF, Hobbs KA, Conway CC, Dick DM, Dretsch MN, Eaton NR, et al. Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry. 2021;20:171–93.

    PubMed  PubMed Central  Google Scholar 

  141. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:1–8.

    Google Scholar 

  142. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am Psychiatr Assoc. 2010;167:748–51.

    Google Scholar 

  143. Simmons JM, Quinn KJ. The NIMH research domain criteria (RDoC) project: implications for genetics research. Mamm Genome. 2014;25:23–31.

    CAS  PubMed  Google Scholar 

  144. Michelini G, Palumbo IM, DeYoung CG, Latzman RD, Kotov R. Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. Clin Psychol Rev. 2021;86:102025.

    PubMed  PubMed Central  Google Scholar 

  145. Halvorsen M, Samuels J, Wang Y, Greenberg BD, Fyer AJ, McCracken JT, et al. Exome sequencing in obsessive–compulsive disorder reveals a burden of rare damaging coding variants. Nat Neurosci. 2021;24:1071–6.

    CAS  PubMed  Google Scholar 

  146. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:09-516.

  147. Jacquemont S, Huguet G, Klein M, Chawner SJ, Donald KA, van den Bree MB, et al. Genes to Mental Health (G2MH): a framework to map the combined effects of rare and common variants on dimensions of cognition and psychopathology. Am J Psychiatry. 2022;179:189–203.

    PubMed  PubMed Central  Google Scholar 

  148. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl J Med. 2012;367:1321–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mallard TT, Linnér RK, Grotzinger AD, Sanchez-Roige S, Seidlitz J, Okbay A, et al. Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. Cell Genomics. 2022;2:100140.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kimbrel NA, Garrett ME, Dennis MF, Research VM-AMI, Hauser MA, Ashley-Koch AE, et al. A genome-wide association study of suicide attempts and suicidal ideation in US military veterans. Psychiatry Res. 2018;269:64–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Mental Health (R21 MH123908) and the Centers for Disease Control and Prevention (U01 OH011864). GB, TCE, and EV are part funded by the NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

MAW and KGJ conceptualized the study, conducted the literature review, and wrote the first draft of the manuscript. KGJ conducted secondary data analysis. All co-authors critically revised the manuscript drafts and approved the final version.

Corresponding author

Correspondence to Monika A. Waszczuk.

Ethics declarations

Competing interests

CM Bulik reports: Shire (grant recipient, Scientific Advisory Board member); Lundbeckfonden (grant recipient); Pearson (author, royalty recipient); Equip Health Inc. (Stakeholder Advisory Board). Other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waszczuk, M.A., Jonas, K.G., Bornovalova, M. et al. Dimensional and transdiagnostic phenotypes in psychiatric genome-wide association studies. Mol Psychiatry 28, 4943–4953 (2023). https://doi.org/10.1038/s41380-023-02142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02142-8

This article is cited by

Search

Quick links