Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoselective chromium-catalysed cross-coupling enables three-component tertiary alkane synthesis

Abstract

The development of multiple-component cross-coupling reactions is a challenge due to issues of selectivity and efficiency. In the present study, we report a chromium-catalysed, multicomponent cross-coupling reaction for the synthesis of tertiary hydrocarbons using two distinct electrophiles and one nucleophile. The tertiary alkane reaction products are important three-dimensional space structures and prevalent in a variety of drugs and bioactive molecules. The strategy comprises two cross-coupling processes of inactivated geminal C–O and C–H bonds with arylmagnesium reagents and several electrophiles, enabling the inhibition of competitive side couplings to achieve high selectivity and diversification by chromium catalysis. The synthetic scope of the multicomponent process was demonstrated through the selective synthesis of a range of diarylated tertiary silanes and difluoroallylated and alkylated alkanes. The process was also found to be readily scalable and could be applied to the synthesis of market-selling drugs, anticancer agents and bioactive molecules. Mechanistic studies revealed an amphipathic diheterometalloalkane intermediate by incorporating two distinct functional groups in the formation of tertiary hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transition metal-catalysed cross-couplings.
Fig. 2: Selective, three-component, silylative cross-coupling in forming silylated tertiary alkanes.
Fig. 3: Deuterium-labelling experiments.
Fig. 4: DFT calculations.
Fig. 5: Application of the couplings in preparing bioactive tertiary alkanes.
Fig. 6: Application in the synthesis of market-selling drugs and functionalization.

Similar content being viewed by others

Data availability

Experimental details, nuclear magnetic resonance spectra and theoretical studies files are included as Supplementary Information.

References

  1. de Meijere, A. & Diederich, F. (eds) Metal-Catalyzed Cross-Coupling Reactions 2nd edn, Vol. 2 (Wiley-VCH, 2004).

  2. Negishi, E.-i Transition metal-catalyzed organometallic reactions that have revolutionized organic synthesis. Bull. Chem. Soc. Jpn 80, 233–257 (2007).

    Article  CAS  Google Scholar 

  3. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  4. Choi, J. & Fu, G. C. Transition metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klinman, J. & Hammes-Schiffer, S. (eds) Dynamics in Enzyme Catalysis Vol. 337 (Springer, 2013).

  6. Zhu, J. & Bienaymé, H. (eds) Multicomponent Reactions (Wiley-VCH, 2005).

  7. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    Article  CAS  Google Scholar 

  8. Liu, L. et al. General method for iron-catalyzed multicomponent radical cascades–cross-couplings. Science 374, 432–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blacker, J. A. & Williams, M. T. (eds) Pharmaceutical Process Development: Current Chemical and Engineering Challenges (Royal Society of Chemistry, 2011).

  11. George, K. L. & Horne, W. S. Foldamer tertiary structure through sequence-guided protein backbone alteration. Acc. Chem. Res. 51, 1220–1228 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009).

    Article  CAS  Google Scholar 

  14. Saito, B. & Fu, G. C. Alkyl−alkyl suzuki cross-couplings of unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 129, 9602–9603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xia, Y., Zhang, Y. & Wang, J. Catalytic cascade reactions involving metal carbene migratory insertion. ACS Catal. 3, 2586–2598 (2013).

    Article  CAS  Google Scholar 

  16. Jumde, R. P., Lanza, F., Veenstra, M. J. & Harutyunyan, S. R. Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic N-heterocycles. Science 352, 433–437 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Derosa, J., Apolinar, O., Kang, T., Tran, V. T. & Engle, K. M. Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 11, 4287–4296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, D.-W. et al. Cascade CuH-catalysed conversion of alkynes into enantioenriched 1,1-disubstituted products. Nat. Catal. 3, 23–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Melhado, A. D., Brenzovich, W. E. Jr., Lackner, A. D. & Toste, F. D. Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes. J. Am. Chem. Soc. 132, 8885–8887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, W., Ding, C. & Yin, G. Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins. Nat. Catal. 3, 951–958 (2020).

    Article  CAS  Google Scholar 

  21. Murai, M. et al. Structural characterization and unique catalytic performance of silyl-group-substituted geminal dichromiomethane complexes stabilized with a diamine ligand. J. Am. Chem. Soc. 139, 13184–13192 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Okazoe, T., Takai, K. & Utimoto, K. (E)-Selective olefination of aldehydes by means of gem-dichromium reagents derived by reduction of gem-diiodoalkanes with chromium(II) chloride. J. Am. Chem. Soc. 109, 951–953 (1987).

    Article  CAS  Google Scholar 

  23. Wang, Z., Guo, C.-Y., Yang, C. & Chen, J.-P. Ag-catalyzed chemoselective decarboxylative mono- and gem-difluorination of malonic acid derivatives. J. Am. Chem. Soc. 141, 5617–5622 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Hazrati, H. & Oestreich, M. Copper-catalyzed double C(sp3)–Si coupling of geminal dibromides: ionic-to-radical switch in the reaction mechanism. Org. Lett. 20, 5367–5369 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalyzed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp3)–H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Murai, M., Taniguchi, R., Mizuta, C. & Takai, K. Chromium-mediated stannylcyclopropanation of alkenes with (diiodomethyl)stannanes. Org. Lett. 21, 2668–2672 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Tollefson, E. J., Hanna, L. E. & Jarvo, E. R. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters. Acc. Chem. Res. 48, 2344–2353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nattmann, L., Lutz, S., Ortsack, P., Goddard, R. & Cornella, J. A highly reduced Ni–Li–olefin complex for catalytic Kumada–Corriu cross-couplings. J. Am. Chem. Soc. 140, 13628–13633 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Li, J. & Knochel, P. Chromium-catalyzed cross-couplings and related reactions. Synthesis 51, 2100–2106 (2019).

    Article  CAS  Google Scholar 

  30. Cong, X. & Zeng, X. Mechanistic diversity of low-valent chromium catalysis: cross-coupling and hydrofunctionalization. Acc. Chem. Res. 54, 2014–2026 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Agapie, T. Selective ethylene oligomerization: recent advances in chromium catalysis and mechanistic investigations. Coord. Chem. Rev. 255, 861–880 (2011).

    Article  CAS  Google Scholar 

  32. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Ramesh, R. & Reddy, D. S. Quest for novel chemical entities through incorporation of silicon in drug scaffolds. J. Med. Chem. 61, 3779–3798 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ciriminna, R. et al. The sol–gel route to advanced silica-based materials and recent applications. Chem. Rev. 113, 6592–6620 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Rémond, E., Martin, C., Martinez, J. & Cavelier, F. Silicon-containing amino acids: synthetic aspects, conformational studies, and applications to bioactive peptides. Chem. Rev. 116, 11654–11684 (2016).

    Article  PubMed  Google Scholar 

  36. Barzan, C. et al. Ligands make the difference! molecular insights into CrVI/SiO2 phillips catalyst during ethylene polymerization. J. Am. Chem. Soc. 139, 17064–17073 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Steib, A. K., Kuzmina, O. M., Fernandez, S., Flubacher, D. & Knochel, P. Efficient chromium(II)-catalyzed cross-coupling reactions between Csp2 centers. J. Am. Chem. Soc. 135, 15346–15349 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Vasilopoulos, A., Zultanski, S. L. & Stahl, S. S. Feedstocks to pharmacophores: Cu-catalyzed oxidative arylation of inexpensive alkylarenes enabling direct access to diarylalkanes. J. Am. Chem. Soc. 139, 7705–7708 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Ameen, D. & Snape, T. J. Chiral 1,1-diaryl compounds as important pharmacophores. Med. Chem. Commun. 4, 893–907 (2013).

    Article  CAS  Google Scholar 

  40. Wu, Z., Gockel, S. N. & Hull, K. L. Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. Nat. Commun. 12, 5956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Magueur, G., Crousse, B., Ourévitch, M., Bonnet-Delpon, D. & Bégué, J.-P. Fluoro-artemisinins: when a gem-difluoroethylene replaces a carbonyl group. J. Fluorine Chem. 127, 637–642 (2006).

    Article  CAS  Google Scholar 

  44. Xiong, Y., Luo, M. & Zeng, X. Chromium-catalyzed three-component synthesis of monofluoroalkenes from gem-difluoroalkenes via C−O/C−H and C−F bond activation. Org. Lett. 25, 3120–3125 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Cornella, J., Zarate, C. & Martin, R. Metal-catalyzed activation of ethers via C–O bond cleavage: a new strategy for molecular diversity. Chem. Soc. Rev. 43, 8081–8097 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Cong, X., Tang, H. & Zeng, X. Regio- and chemoselective Kumada–Tamao–Corriu reaction of aryl alkyl ethers catalyzed by chromium under mild conditions. J. Am. Chem. Soc. 137, 14367–14372 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Albahily, K. et al. Vinyl oxidative coupling as a synthetic route to catalytically active monovalent chromium. J. Am. Chem. Soc. 133, 6388–6395 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Knochel, P., Yeh, M. C. P. & Xiao, C. Preparation and reactivity of mixed benzylic 1,1-dimetalloalkanes. Organometallics 8, 2831–2835 (1989).

    Article  CAS  Google Scholar 

  49. Michel, O. et al. Reactivity of permethylated magnesium complexes toward β-diimines. Organometallics 30, 3818–3825 (2011).

    Article  CAS  Google Scholar 

  50. Marek, I. & Normant, J.-F. Synthesis and reactivity of sp3-geminated organodimetallics. Chem. Rev. 96, 3241–3268 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Hills, C. J., Winter, S. A. & Balfour, J. A. Tolterodine. Drugs 55, 813–820 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, Y.-S., Kuo, Y.-C., Kuei, C.-H. & Chang, M.-Y. Palladium-mediated synthesis of 1,1,2-triarylethanes. Application to the synthesis of CDP-840. Tetrahedron 73, 1275–1282 (2017).

    Article  CAS  Google Scholar 

  53. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Alexander, R. P. et al. CDP840. A prototype of a novel class of orally active anti-inflammatory phosphodiesterase 4 inhibitors. Bioorg. Med. Chem. Lett. 12, 451–1456 (2002).

    Article  Google Scholar 

  55. Ivelina, M. et al. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl Grignard reagents and identification of selective anti-breast-cancer agents. Angew. Chem. Int. Ed. 53, 2422–2427 (2014).

    Article  Google Scholar 

  56. Lv, X.-Y., Fan, C., Xiao, L.-J., Xie, J.-H. & Zhou, Q.-L. Ligand-enabled Ni-catalyzed enantioselective hydroarylation of styrenes and 1,3-dienes with arylboronic acids. CCS Chem. 1, 328–334 (2019).

    Article  CAS  Google Scholar 

  57. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, eabc3183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (grant no. 2021YFA1500200 to H.C.), the National Natural Science Foundation of China (grant nos. 22125107 and 21971168 to X.Z. and 21871186 to M.L.) and Fundamental Research Funds for the Central Universities (grant no. 20826041D4117 to X.Z.) for financial support. We also thank D. Deng from the College of Chemistry at Sichuan University for nuclear magnetic resonance testing.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. designed the overall research project. F.F., M.L. and X.Z. designed and conducted directed evolution experiments. F.F., L.L. and C.L. conducted the studies of substrate scope and mechanistic experiments. L.L. and H.C. performed the computational studies. All authors analysed the data and contributed to the preparation of the paper. X.Z. and H.C. wrote the paper.

Corresponding authors

Correspondence to Meiming Luo, Hui Chen or Xiaoming Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Robert Pollice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details: Supplementary Sections 1–10, Tables 1–9 and Figs. 1–7.

Supplementary Data 1

Cartesian coordinates for the DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Long, L., Ling, L. et al. Chemoselective chromium-catalysed cross-coupling enables three-component tertiary alkane synthesis. Nat. Synth 2, 1046–1058 (2023). https://doi.org/10.1038/s44160-023-00364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00364-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing