Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cascade asymmetric dearomative cyclization reactions via transition-metal-catalysis

Abstract

Catalytic asymmetric dearomatization (CADA) reactions offer an efficient strategy for directly converting aromatic compounds into chiral cyclic molecules. Cascade dearomative cyclization reactions are an important subclass of these transformations, providing rapid access to various polycyclic scaffolds. Given the wide existence of natural products and bioactive molecules with polyheterocyclic skeletons, cascade dearomative cyclization reactions of versatile heteroaromatic compounds are particularly attractive. In this Review, we discuss representative examples of cascade asymmetric dearomative cyclization reactions catalysed by transition-metal complexes (including Au, Ir, Pd, Cu, Rh, Ni, Zn, Ti and V complexes) from the past decade. Close attention is paid to the dearomative cyclization reactions of indoles and related heteroaromatic compounds, with an emphasis on the reaction mechanisms, substrate scope and applications in total synthesis, as well as limitations and possible future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected bioactive molecules of polycyclic indolines and the four different types of cascade dearomative cyclization reactions.
Fig. 2: Au-catalysed [2 + 2] cyclization using indoles as nucleophiles.
Fig. 3: [3 + 2] cyclization using indoles as nucleophiles with either vinyl carbenes, carbonyl ylides, quinones, aziridines or donor–acceptor cyclopropanes.
Fig. 4: [4 + 2] cyclization using indoles as nucleophiles.
Fig. 5: [3 + 2] cyclization using indoles as electrophiles.
Fig. 6: Cyclization initiated with allylic or propargylic substitution reactions.
Fig. 7: Cyclization initiated with C-arylation and C–X (X = O, N) formation reactions.
Fig. 8: Visible-light-promoted [2 + 2] or [4 + 2] reactions.

Similar content being viewed by others

References

  1. Roche, S. P. & Porco, J. A. Jr Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    Article  CAS  Google Scholar 

  2. Zhang, D., Song, H. & Qin, Y. Total synthesis of indoline alkaloids: a cyclopropanation strategy. Acc. Chem. Res. 44, 447–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Zi, W., Zuo, Z. & Ma, D. Intramolecular dearomative oxidative coupling of indoles: a unified strategy for the total synthesis of indoline alkaloids. Acc. Chem. Res. 48, 702–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. You, S.-L. Asymmetric Dearomatization Reactions (Wiley-VCH, 2016).

  5. Wu, W.-T., Zhang, L. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev. 45, 1570–1580 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Zheng, C. & You, S.-L. Catalytic asymmetric dearomatization by transition-metal catalysis: a method for transformations of aromatic compounds. Chem 1, 830–857 (2016).

    Article  CAS  Google Scholar 

  7. Xia, Z.-L., Xu-Xu, Q.-F., Zheng, C. & You, S.-L. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem. Soc. Rev. 49, 286–300 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Sheng, F.-T., Wang, J.-Y., Tan, W., Zhang, Y.-C. & Shi, F. Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Org. Chem. Front. 7, 3967–3998 (2020).

    Article  CAS  Google Scholar 

  9. Zheng, C. & You, S.-L. Advances in catalytic asymmetric dearomatization. ACS Cent. Sci. 7, 432–444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, G. & Yin, B. Recent developments in transition metal-catalyzed dearomative cyclizations of indoles as dipolarophiles for the construction of indolines. Adv. Synth. Catal. 361, 405–425 (2019).

    Article  CAS  Google Scholar 

  11. Lv, S., Zhang, G., Chen, J. & Gao, W. Electrochemical dearomatization: evolution from chemicals to traceless electrons. Adv. Synth. Catal. 362, 462–477 (2020).

    Article  CAS  Google Scholar 

  12. Alcaide, B., Almendros, P. & Aragoncillo, C. Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev. 39, 783–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Fructos, M. R. & Prieto, A. [2+2] Cycloaddition reactions promoted by group 11 metal-based catalysts. Tetrahedron 72, 355–369 (2016).

    Article  CAS  Google Scholar 

  14. Zhang, L. Tandem Au-catalyzed 3,3-rearrangement-[2+2] cycloadditions of propargylic esters: expeditious access to highly functionalized 2,3-indoline-fused cyclobutanes. J. Am. Chem. Soc. 127, 16804–16805 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Faustino, H., Bernal, P., Castedo, L., López, F. & Mascareñas, J. L. Gold(I)-catalyzed intermolecular [2+2] cycloadditions between allenamides and alkenes. Adv. Synth. Catal. 354, 1658–1664 (2012).

    Article  CAS  Google Scholar 

  16. Bandini, M. Au-Catalyzed Synthesis and Functionalization of Heterocycles (Springer, 2016).

  17. Jia, M., Monari, M., Yang, Q.-Q. & Bandini, M. Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles and allenamides. Chem. Commun. 51, 2320–2323 (2015).

    Article  CAS  Google Scholar 

  18. Magné, V. et al. Chiral phosphathiahelicenes: improved synthetic approach and uses in enantioselective gold(I)-catalyzed [2+2] cycloadditions of N‑homoallenyl tryptamines. ACS Catal. 10, 8141–8148 (2020).

    Article  Google Scholar 

  19. Niemeyer, Z. L. et al. Parameterization of acyclic diaminocarbene ligands applied to a gold(I)-catalyzed enantioselective tandem rearrangement/cyclization. J. Am. Chem. Soc. 139, 12943–12946 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hassner, A. Synthesis of Heterocycles via Cycloadditions I (Springer, 2008).

  21. Hashimoto, T. & Maruoka, K. Recent advances of catalytic asymmetric 1,3-dipolar cycloadditions. Chem. Rev. 115, 5366–5412 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Lian, Y. & Davies, H. M. L. Rhodium-catalyzed [3+2] annulation of indoles. J. Am. Chem. Soc. 132, 440–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Jing, C., Cheng, Q.-Q., Deng, Y., Arman, H. & Doyle, M. P. Highly regio- and enantioselective formal [3+2]-annulation of indoles with electrophilic enol carbene intermediates. Org. Lett. 18, 4550–4553 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Spangler, J. E. & Davies, H. M. L. Catalytic asymmetric synthesis of pyrroloindolines via a rhodium(II)-catalyzed annulation of indoles. J. Am. Chem. Soc. 135, 6802–6805 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Shimada, N., Oohara, T., Krishnamurthi, J., Nambu, H. & Hashimoto, S. Catalytic enantioselective intermolecular cycloaddition of diazodiketoester derived carbonyl ylides with indoles using chiral dirhodium(II) carboxylates. Org. Lett. 13, 6284–6287 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, J.-M., Li, P.-H., Wei, Y., Tang, X.-Y. & Shi, M. Gold(I)-catalyzed highly stereoselective synthesis of polycyclic indolines: the construction of four contiguous stereocenters. Chem. Commun. 52, 346–349 (2016).

    Article  CAS  Google Scholar 

  27. Chen, W. et al. Asymmetric synthesis of furo[3,4-b]indoles by catalytic [3+2] cycloaddition of indoles with epoxides. Chem. Eur. J. 21, 15104–15107 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Q.-J. et al. Highly enantioselective [3+2] annulation of indoles with quinones to access structurally diverse benzofuroindolines. Angew. Chem. Int. Ed. 57, 3810–3814 (2018).

    Article  CAS  Google Scholar 

  29. Chai, Z. et al. Copper(I)-catalyzed kinetic resolution of N-sulfonylaziridines with indoles: efficient construction of pyrroloindolines. J. Am. Chem. Soc. 137, 10088–10091 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, P.-J., Qi, L., Liu, Z., Yang, G. & Chai, Z. Lewis acid catalyzed dynamic kinetic asymmetric transformation of racemic N-sulfonylaziridines. J. Am. Chem. Soc. 140, 17211–17217 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Cavitt, M. A., Phun, L. H. & France, S. Intramolecular donor-acceptor cyclopropane ring-opening cyclizations. Chem. Soc. Rev. 43, 804–818 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Xiong, H., Xu, H., Liao, S., Xie, Z. & Tang, Y. Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor-acceptor cyclopropanes. J. Am. Chem. Soc. 135, 7851–7854 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Feng, L.-W. et al. Reaction of donor-acceptor cyclobutanes with indoles: a general protocol for the formal total synthesis of (±)-strychnine and the total synthesis of (±)-akuammicine. Angew. Chem. Int. Ed. 56, 3055–3058 (2017).

    Article  CAS  Google Scholar 

  34. Kuang, X.-K. et al. Synergetic tandem enantiomeric enrichment in catalytic asymmetric multi-component reactions (AMCRs): highly enantioselective construction of tetracyclic indolines with four continuous stereocenters. ACS Catal. 8, 4991–4995 (2018).

    Article  CAS  Google Scholar 

  35. Zhang, Y., Stephens, D., Hernandez, G., Mendoza, R. & Larionov, O. V. Catalytic diastereo- and enantioselective annulations between transient nitrosoalkenes and indoles. Chem. Eur. J. 18, 16612–16615 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Tong, M.-C. et al. Catalytic asymmetric synthesis of [2,3]-fused indoline heterocycles through inverse-electron-demand aza-Diels-Alder reaction of indoles with azoalkenes. Angew. Chem. Int. Ed. 53, 4680–4684 (2014).

    Article  CAS  Google Scholar 

  37. Gao, R.-D. et al. Palladium(0)-catalyzed intermolecular allylic dearomatization of indoles by a formal [4+2] cycloaddition reaction. Chem. Eur. J. 22, 11601–11604 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Li, T.-R., Wang, Y.-N., Xiao, W.-J. & Lu, L.-Q. Transition-metal-catalyzed cyclization reactions using vinyl and ethynyl benzoxazinones as dipole precursors. Tetrahedron Lett. 59, 1521–1530 (2018).

    Article  CAS  Google Scholar 

  39. Shao, W. & You, S.-L. Highly diastereo- and enantioselective synthesis of tetrahydro-5H-indolo[2,3-b]quinolines through copper-catalyzed propargylic dearomatization of indoles. Chem. Eur. J. 23, 12489–12493 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Liang, X. et al. Ir-catalyzed asymmetric total synthesis of (-)-communesin F. J. Am. Chem. Soc. 139, 3364–3367 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Cerveria, A. & Bandini, M. Recent advances in the catalytic functionalization of “electrophilic” indoles. Chin. J. Chem. 38, 287–294 (2020).

    Article  Google Scholar 

  42. Awata, A. & Arai, T. PyBidine/copper catalyst: asymmetric exo’-selective [3+2] cycloaddition using imino ester and electrophilic indole. Angew. Chem. Int. Ed. 53, 10462–10465 (2014).

    Article  CAS  Google Scholar 

  43. Gerten, A. L. & Stanley, L. M. Enantioselective dearomative [3+2] cycloadditions of indoles with azomethine ylides derived from alanine imino esters. Org. Chem. Front. 3, 339–343 (2016).

    Article  CAS  Google Scholar 

  44. Trost, B. M., Ehmke, V., O’Keefe, B. M. & Bringley, D. A. Palladium-catalyzed dearomative trimethylenemethane cycloaddition reactions. J. Am. Chem. Soc. 136, 8213–8216 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, Q., Zhang, F., Cai, Y., Guo, Y.-L. & You, S.-L. Stereodivergent synthesis of tetrahydrofuroindoles through Pd-catalyzed asymmetric dearomative formal [3+2] cycloaddition. Angew. Chem. Int. Ed. 57, 2134–2138 (2018).

    Article  CAS  Google Scholar 

  46. Suo, J.-J., Liu, W., Du, J., Ding, C.-H. & Hou, X.-L. Diastereo- and enantioselective palladium-catalyzed dearomative [3+2] cycloaddition of 3-nitroindoles. Chem. Asian J. 13, 959–963 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, J.-Q. et al. Pd-catalyzed asymmetric dearomative cycloaddition for construction of optically active pyrroloindoline and cyclopentaindoline derivatives: access to 3a-aminopyrroloindolines. J. Org. Chem. 83, 2882–2891 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Sun, M. et al. Catalytic asymmetric dearomative [3+2] cycloaddition of electron-deficient indoles with all-carbon 1,3-dipoles. J. Org. Chem. 83, 2341–2348 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, J.-Q. et al. Zn-Catalyzed diastereo- and enantioselective cascade reaction of 3‑isothiocyanato oxindoles and 3‑nitroindoles: stereocontrolled syntheses of polycyclic spirooxindoles. Org. Lett. 17, 5020–5023 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Trost, B. M. & Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 103, 2921–2944 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Lu, Z. & Ma, S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed. 47, 258–297 (2008).

    Article  CAS  Google Scholar 

  52. Trost, B. M. & Quancard, J. Palladium-catalyzed enantioselective C-3 allylation of 3-substituted-1H-indoles using trialkylboranes. J. Am. Chem. Soc. 128, 6314–6315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tu, H.-F., Zhang, X., Zheng, C., Zhu, M. & You, S.-L. Enantioselective dearomative prenylation of indole derivatives. Nat. Catal. 1, 601–608 (2018).

    Article  CAS  Google Scholar 

  54. Cheng, Q. et al. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 119, 1855–1969 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X., Han, L. & You, S.-L. Ir-catalyzed intermolecular asymmetric allylic dearomatization reaction of indoles. Chem. Sci. 5, 1059–1063 (2014).

    Article  CAS  Google Scholar 

  56. Zhang, X., Liu, W.-B., Tu, H.-F. & You, S.-L. Ligand-enabled Ir-catalyzed intermolecular diastereoselective and enantioselective allylic alkylation of 3-substituted indoles. Chem. Sci. 6, 4525–4529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, R., Ding, L., Zheng, C. & You, S.-L. Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions. Science 371, 380–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, S.-Z. et al. Iridium-Catalyzed Enantioselective indole cyclization: application to the total synthesis and absolute stereochemical assignment of (-)-aspidophylline A. Angew. Chem. Int. Ed. 55, 4044–4048 (2016).

    Article  CAS  Google Scholar 

  59. Zhang, Z.-X., Chen, S.-C. & Jiao, L. Total synthesis of (+)-minfiensine: construction of the tetracyclic core structure by an asymmetric cascade cyclization. Angew. Chem. Int. Ed. 55, 8090–8094 (2016).

    Article  CAS  Google Scholar 

  60. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Shao, W., Li, H., Liu, C., Liu, C.-J. & You, S.-L. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles. Angew. Chem. Int. Ed. 54, 7684–7687 (2015).

    Article  CAS  Google Scholar 

  62. Grushin, V. V. Cyclic diaryliodonium ions: old mysteries solved and new applications envisaged. Chem. Soc. Rev. 29, 315–324 (2000).

    Article  CAS  Google Scholar 

  63. Merritt, E. A. & Olofsson, B. Diaryliodonium salts: a journey from obscurity to fame. Angew. Chem. Int. Ed. 48, 9052–9070 (2009).

    Article  CAS  Google Scholar 

  64. Zhu, S. & MacMillan, D. W. C. Enantioselective copper-catalyzed construction of aryl pyrroloindolines via an arylation-cyclization cascade. J. Am. Chem. Soc. 134, 10815–10818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, C. et al. Copper(I)-catalyzed asymmetric dearomatization of indole acetamides with 3-indolylphenyliodonium Salts. Chem. Eur. J. 22, 10813–10816 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Jamison, C. R., Badillo, J. J., Lipshultz, J. M., Comito, R. J. & MacMillan, D. W. C. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products. Nat. Chem. 9, 1165–1169 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Sunazuka, T. et al. Total synthesis of (+)-madindoline A and (-)-madindoline B, potent, selective inhibitors of interleukin 6. Determination of the relative and absolute configurations. J. Am. Chem. Soc. 122, 2122–2123 (2000).

    Article  CAS  Google Scholar 

  68. Han, L., Liu, C., Zhang, W., Shi, X.-X. & You, S.-L. Dearomatization of tryptophols via a vanadium-catalyzed asymmetric epoxidation and ring-opening cascade. Chem. Commun. 50, 1231–1233 (2014).

    Article  CAS  Google Scholar 

  69. Han, L., Zhang, W., Shi, X.-X. & You, S.-L. Dearomatization of indoles via a phenol-directed vanadium- catalyzed asymmetric epoxidation and ring-opening cascade. Adv. Synth. Catal. 357, 3064–3068 (2015).

    Article  CAS  Google Scholar 

  70. Sawano, T. & Yamamoto, H. Enantioselective epoxidation of β,γ-unsaturated carboxylic acids by a cooperative binuclear titanium complex. ACS Catal. 9, 3384–3388 (2019).

    Article  CAS  Google Scholar 

  71. Liu, C. et al. Enantioselective synthesis of 3a-amino-pyrroloindolines by copper-catalyzed direct asymmetric dearomative amination of tryptamines. Angew. Chem. Int. Ed. 55, 751–754 (2016).

    Article  CAS  Google Scholar 

  72. Huang, X. et al. Direct visible-light-excited asymmetric Lewis acid catalysis of intermolecular [2+2] photocycloadditions. J. Am. Chem. Soc. 139, 9120–9123 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Stegbauer, S., Jandl, C. & Bach, T. Enantioselective Lewis acid catalyzed ortho photocycloaddition of olefins to phenanthrene-9-carboxaldehydes. Angew. Chem. Int. Ed. 57, 14593–14596 (2018).

    Article  CAS  Google Scholar 

  74. Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: unlocking the next level. Chem 6, 1888–1903 (2020).

    Article  CAS  Google Scholar 

  75. Schwinger, D. P. & Bach, T. Chiral 1,3,2-oxazaborolidine catalysts for enantioselective photochemical reactions. Acc. Chem. Res. 53, 1933–1943 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Großkopf, J., Kratz, T., Rigotti, T. & Bach, T. Enantioselective photochemical reactions enabled by triplet energy transfer. Chem. Rev. 122, 1626–1653 (2022).

    Article  PubMed  Google Scholar 

  77. Hu, N. et al. Catalytic asymmetric dearomatization by visible-light-activated [2+2] photocycloaddition. Angew. Chem. Int. Ed. 57, 6242–6246 (2018).

    Article  CAS  Google Scholar 

  78. Zhu, M., Zheng, C., Zhang, X. & You, S.-L. Synthesis of cyclobutane-fused angular tetracyclic spiroindolines via visible-light-promoted intramolecular dearomatization of indole derivatives. J. Am. Chem. Soc. 141, 2636–2644 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Oderinde, M. S. et al. Synthesis of cyclobutane-fused tetracyclic scaffolds via visible-light photocatalysis for building molecular complexity. J. Am. Chem. Soc. 142, 3094–3103 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Z. et al. Photocatalytic intramolecular [2+2] cycloaddition of indole derivatives via energy transfer: a method for late-stage skeletal transformation. ACS Catal. 10, 10149–10156 (2020).

    Article  CAS  Google Scholar 

  81. Zhu, M., Xu, H., Zheng, C., Zhang, X. & You, S.-L. Visible-light-induced intramolecular double dearomative cycloaddition of arenes. Angew. Chem. Int. Ed. 60, 7036–7040 (2021).

    Article  CAS  Google Scholar 

  82. Ma, J. et al. Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science 371, 1338–1345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (2021YFA1500100), NSFC (21821002, 22031012, 91856201, 22171282), and Science and Technology Commission of Shanghai Municipality (19590750400, 21520780100) for generous financial support. Y.-Z.L. thanks the China Postdoctoral Science Foundation (2020M681439).

Author information

Authors and Affiliations

Authors

Contributions

Y.-Z.L., H.S., C.Z. and S.-L.Y. co-wrote the manuscript.

Corresponding authors

Correspondence to Chao Zheng or Shu-Li You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Alison Stoddart was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YZ., Song, H., Zheng, C. et al. Cascade asymmetric dearomative cyclization reactions via transition-metal-catalysis. Nat Synth 1, 203–216 (2022). https://doi.org/10.1038/s44160-022-00039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00039-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing