Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metal-catalysed C–C bond formation at cyclopropanes

Abstract

Cyclopropanes are important substructures in natural products and pharmaceuticals. Although traditional methods for their incorporation rely on cyclopropanation of an existing scaffold, the advent of transition-metal catalysis has enabled installation of functionalized cyclopropanes using cross-coupling reactions. The unique bonding and structural properties of cyclopropane render it more easily functionalized in transition-metal-catalysed cross-couplings than other C(sp3) substrates. The cyclopropane coupling partner can participate in polar cross-coupling reactions either as a nucleophile (organometallic reagents) or as an electrophile (cyclopropyl halides). More recently, single-electron transformations featuring cyclopropyl radicals have emerged. This Review will provide an overview of transition-metal-catalysed C–C bond formation reactions at cyclopropane, covering both traditional and current strategies, and the benefits and limitations of each.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background on the cyclopropane ring.
Fig. 2: Select examples of Suzuki couplings of cyclopropanes.
Fig. 3: Selected examples of transition-metal-catalysed reactions of cyclopropyl organometallics.
Fig. 4: Selected examples of cyclopropane C–H functionalization.
Fig. 5: Metallaphotoredox transformations of cyclopropanes.
Fig. 6: Select examples of single-electron cross-couplings of cyclopropanes.

Similar content being viewed by others

References

  1. Dill, J. D., Greenberg, A. & Liebman, J. F. Substituent effects on strain energies. J. Am. Chem. Soc. 101, 6814–6826 (1979).

    Article  CAS  Google Scholar 

  2. De Meijere, A. Bonding properties of cyclopropane and their chemical consequences. Angew. Chem. Int. Ed. 18, 809–886 (1979). This useful report details many properties and reactivity trends of cyclopropanes.

    Article  Google Scholar 

  3. Chen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. Recent advances in the total synthesis of cyclopropane-containing natural products. Chem. Soc. Rev. 41, 4631–4642 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Fan, Y.-Y., Gao, X.-H. & Yue, J.-M. Attractive natural products with strained cyclopropane and/or cyclobutane ring systems. Sci. China Chem. 59, 1126–1141 (2016).

    Article  CAS  Google Scholar 

  5. Ma, S., Mandalapu, D., Wang, S. & Zhang, Q. Biosynthesis of cyclopropane in natural products. Nat. Prod. Rep. 39, 926–945 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Talele, T. T. The ‘cyclopropyl fragment’ is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem. 59, 8712–8756 (2016). This Perspective outlines contemporary pharmaceuticals and pharmaceutical candidates that contain a cyclopropane, as well as the contributions of a cyclopropyl ring to the properties of these drugs.

    Article  CAS  PubMed  Google Scholar 

  7. Časar, Z. Synthetic approaches to contemporary drugs that contain the cyclopropyl moiety. Synthesis 52, 1315–1345 (2020).

    Article  Google Scholar 

  8. Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Sansinenea, E. & Ortiz, A. The chemistry of cyclopropanes and new insights into organocatalyzed asymmetric cyclopropanation. Eur. J. Org. Chem. 2022, e202200210 (2022).

    Article  CAS  Google Scholar 

  10. Bartoli, G., Bencivenni, G. & Dalpozzo, R. Asymmetric cyclopropanation reactions. Synthesis 46, 979–1029 (2014).

    Article  Google Scholar 

  11. Wenbing, J., Hua, Y. & Gongli, T. Strategies for construction of cyclopropanes in natural products. China J. Org. Chem. 38, 2324–2334 (2018).

    Article  Google Scholar 

  12. Wu, W., Lin, Z. & Jiang, H. Recent advances in the synthesis of cyclopropanes. Org. Biomol. Chem. 16, 7315–7329 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Meijere, A. & Diederich, F. Metal-Catalyzed Cross-Coupling Reactions 2nd edn, Vol. 1 (Wiley-VCH, 2004).

  15. De Meijere, A. & Diederich, F. Metal-Catalyzed Cross-Coupling Reactions 2nd edn, Vol. 2 (Wiley-VCH, 2004).

  16. Rubin, M., Rubina, M. & Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 107, 3117–3179 (2007). This comprehensive review contains a thorough overview of early cross-coupling reactions at cyclopropane up to 2007 (that is, Suzuki, Kumada, Negishi, Stille and C–H activation).

    Article  CAS  PubMed  Google Scholar 

  17. Dian, L. & Marek, I. Asymmetric preparation of polysubstituted cyclopropanes based on direct functionalization of achiral three-membered carbocycles. Chem. Rev. 118, 8415–8434 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Pirenne, V., Muriel, B. & Waser, J. Catalytic enantioselective ring-opening reactions of cyclopropanes. Chem. Rev. 121, 227–263 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L. J. & Tang, Y. Asymmetric ring-opening reactions of donor–acceptor cyclopropanes and cyclobutanes. Isr. J. Chem. 56, 463–475 (2016).

    Article  CAS  Google Scholar 

  21. Quan, L. G., Lee, H. G. & Cha, J. K. Acid- and Pd(0)-catalyzed ring opening of 1-(1-cycloalkenyl)cyclopropyl sulfonates. Org. Lett. 9, 4439–4442 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Sarel, B. S., Yovell, J. & Sarel-Imber, M. Recent developments in the stereochemistry of cyclopropane ring opening. Angew. Chem. Int. Ed. 7, 577–588 (1968).

    Article  CAS  Google Scholar 

  23. DePuy, C. H. The chemistry of cyclopropanols. Acc. Chem. Res. 1, 33–41 (1968).

    Article  CAS  Google Scholar 

  24. Schleyer, P. V. R., Su, T. M., Saunder, M. & Rosenfield, J. C. The stereochemistry of allyl cations from the isomeric 2,3-dimethylcyclopropyl chlorides. The stereomutation of allyl cations. J. Am. Chem. Soc. 91, 5174–5176 (1969).

    Article  CAS  Google Scholar 

  25. Marek, I., Masarwa, A., Delaye, P.-O. & Leibeling, M. Selective carbon–carbon cleavage for the stereoselective synthesis of acyclic systems. Angew. Chem. Int. Ed. 54, 414–429 (2015).

    Article  CAS  Google Scholar 

  26. Miyaura, N. in Metal-Catalyzed Cross-Coupling Reactions (eds de Meijere, A. & Diederich, F.) 41–124 (Wiley-VCH, 2004).

  27. Wang, X.-Z. & Deng, M.-Z. Cross-coupling reaction of cyclopropylboronic acid with bromoarenes. J. Chem. Soc. Perkin Trans. 1, 2663–2664 (1996).

    Article  Google Scholar 

  28. Ma, H.-R., Wang, X.-H. & Deng, M.-Z. Palladium-catalyzed cross-coupling reaction of stereodefined cyclopropylboronic acids with N-heterocycle bromides. Synth. Commun. 29, 2477–2485 (1999).

    Article  CAS  Google Scholar 

  29. Yao, M.-L. & Deng, M.-Z. A practical approach to stereodefined cyclopropyl-substituted heteroarenes using a Suzuki-type reaction. N. J. Chem. 24, 425–428 (2000).

    Article  CAS  Google Scholar 

  30. Yao, M.-L. & Deng, M.-Z. Palladium-catalyzed cross-coupling reaction of cyclopropylboronic acids with aryl triflates. Synthesis 8, 1095–1100 (2000).

    Article  Google Scholar 

  31. Zhou, A.-M., Deng, M.-Z., Xia, L.-J. & Tang, M.-H. Efficient Suzuki-type cross-coupling of enantiomerically pure cyclopropylboronic acids. Angew. Chem. Int. Ed. 37, 2845–2847 (1998).

    Article  CAS  Google Scholar 

  32. Rubina, M., Rubin, M. & Gevorgyan, V. Catalytic enantioselective hydroboration of cyclopropenes. J. Am. Chem. Soc. 125, 7198–7199 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wallace, D. J. & Chen, C.-Y. Cyclopropylboronic acid: synthesis and Suzuki cross-coupling reactions. Tetrahedron Lett. 43, 6987–6990 (2002).

    Article  CAS  Google Scholar 

  34. Lemhadri, M., Doucet, H. & Santelli, M. Suzuki coupling of cyclopropylboronic acid with aryl halides catalyzed by a palladium–tetraphosphine complex. Synth. Commun. 36, 121–128 (2006).

    Article  CAS  Google Scholar 

  35. Zhang, W. et al. Facile synthesis of aryl(het)cyclopropane catalyzed by palladacycle. Tetrahedron 68, 900–905 (2012).

    Article  CAS  Google Scholar 

  36. Zhou, S.-M., Yan, Y.-L. & Deng, M.-Z. A novel stereocontrolled synthesis of cyclopropyl-substituted α, β-unsaturated esters: palladium catalyzed cross-coupling of cyclopropylboronic acids with bromoacrylates. Synlett 2, 198–200 (1998).

    Article  Google Scholar 

  37. Yao, M.-L. & Deng, M.-Z. Facile approach to 4-substituted 2(5H)-furanones. J. Org. Chem. 65, 5034–5036 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Yao, M.-L. & Deng, M.-Z. Palladium-catalyzed cross-coupling of cyclopropylboronic acids with alkenyl triflates. Tetrahedron Lett. 41, 9083–9087 (2000).

    Article  CAS  Google Scholar 

  39. Chen, H. & Deng, M.-Z. A novel stereocontrolled synthesis of 1,2-trans cyclopropyl ketones via Suzuki-type coupling of acid chlorides with cyclopropylboronic acids. Org. Lett. 2, 1649–1651 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, H. & Deng, M.-Z. Silver oxide mediated palladium-catalyzed cross-coupling reaction of cyclopropylboronic acids with allylic bromides. J. Org. Chem. 65, 4444–4446 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Hildebrand, J. P. & Marsden, S. P. A novel, stereocontrolled synthesis of 1,2-trans-cyclopropanes: cyclopropyl boronate esters as partners in Suzuki couplings with aryl halides. Synlett 9, 893–894 (1996). This is the first report of Suzuki coupling at a cyclopropane.

    Article  Google Scholar 

  43. Chen, H. & Deng, M.-Z. A novel Suzuki-type cross-coupling reaction of cyclopropylboronic esters with benzyl bromides. J. Chem. Soc. Perkin Trans. 1, 1609–1613 (2000).

    Article  Google Scholar 

  44. Charette, A. B. & De Freitas-Gil, R. Synthesis of contiguous cyclopropanes by palladium-catalyzed Suzuki-type cross-coupling reactions. Tetrahedron Lett. 38, 2809–2812 (1997).

    Article  CAS  Google Scholar 

  45. Peitruszka, J., Witt, A. & Frey, W. Synthesis of ‘Garner’ aldehyde-derived cyclopropylboronic esters. Eur. J. Org. Chem. 2003, 3219–3229 (2003).

    Article  Google Scholar 

  46. Löhr, S. & de Meijere, A. 2-(Bicyclopropylidenyl)- and 2-(trans−2’-cyclopropylcyclopropyl)−4,4,5,5-tetramethyl-1,3-dioxa-2-borolane and their palladium-catalyzed cross-coupling reactions. Synlett 4, 489–492 (2001).

    Article  Google Scholar 

  47. Zimmer, L. E. & Charette, A. B. Enantioselective synthesis of 1,2,3-trisubstituted cyclopropanes using gem-dizinc reagents. J. Am. Chem. Soc. 131, 15624–15626 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Duncton, M. A. J. & Singh, R. Synthesis of trans−2-(trifluoromethyl)cyclopropanes via Suzuki reactions with an N-methyliminodiacetic acid boronate. Org. Lett. 15, 4284–4287 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Spencer, J. A., Jamieson, C. & Talbot, E. P. A. One-pot, three-step synthesis of cyclopropylboronic acid pinacol esters from synthetically tractable propargylic silyl ethers. Org. Lett. 19, 3891–3894 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Miyamura, S., Araki, M., Suzuki, T., Yamaguchi, J. & Itami, K. Stereodivergent synthesis of arylcyclopropylamines by sequential C–H borylation and Suzuki–Miyaura coupling. Angew. Chem. Int. Ed. 127, 860–865 (2015). This report details a unique stereodivergent Suzuki coupling to access 2-arylcyclopropylamines, in which the stereochemical outcome is determined by the presence of either an O2 or N2 atmosphere.

    Article  Google Scholar 

  51. Speckmeier, E. & Maier, T. C. ART — an amino radical transfer strategy for C(sp2)–C(sp3) coupling reactions, enabled by dual photo/nickel catalysis. J. Am. Chem. Soc. 144, 9997–10005 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Soderquist, J. A., Huertas, R. & Leon-Colon, G. Aryl and vinyl cyclopropanes through the in situ generation of B-cyclopropyl-9-BBN and its Suzuki–Miyaura coupling. Tetrahedron Lett. 41, 4251–4255 (2000).

    Article  CAS  Google Scholar 

  53. Fürstner, A. & Leitner, A. General and user-friendly method for Suzuki reactions with aryl chlorides. Synlett 2, 290–292 (2001).

    Article  Google Scholar 

  54. Fang, G.-H., Yan, Z.-J. & Deng, M.-Z. Palladium-catalyzed cross-coupling of stereospecific potassium cyclopropyl trifluoroborates with aryl bromides. Org. Lett. 6, 357–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hohn, E., Pietruszka, J. & Solduga, G. Synthesis of enantiomerically pure cyclopropyl trifluoroborates. Synlett 10, 1531–1534 (2006).

    Google Scholar 

  56. Charette, A. B., Mattieu, S. & Fournier, J.-F. Diastereoselective synthesis of 1,2,3-substituted potassium cyclopropyl trifluoroborates via an unusual zinc–boron exchange. Synlett 11, 1779–1782 (2005).

    Article  Google Scholar 

  57. Molander, G. A. & Gorminsky, P. E. Cross-coupling of cyclopropyl- and cyclobutyltrifluoroborates with aryl and heteroaryl chlorides. J. Org. Chem. 73, 7481–7485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colombel, V., Rombouts, F., Oehlrich, D. & Molander, G. A. Suzuki coupling of potassium cyclopropyl- and alkoxymethyltrifluoroborates with benzyl chlorides. J. Org. Chem. 77, 2966–2970 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Primer, D. N. & Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc. 139, 9847–9850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Charette, A. B. & Giroux, A. Palladium-catalyzed Suzuki-type cross-couplings of iodocyclopropanes with boronic acids: synthesis of transe-1,2-dicyclopropyl alkenes. J. Org. Chem. 61, 8718–8719 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Martin, S. F. & Dwyer, M. P. Iodocyclopropanes as versatile intermediates for the synthesis of substituted cyclopropanes. Tetrahedron Lett. 39, 1521–1524 (1998).

    Article  CAS  Google Scholar 

  62. Maity, P. et al. Development of a scaleable synthesis of BMS-978587 featuring a stereospecific Suzuki coupling of a cyclopropane carboxylic acid. Org. Process. Res. Dev. 22, 888–897 (2018). This report details the Suzuki coupling of an iodocyclopropane as a key step for the large-scale synthesis of BMS-978587, an IDO inhibitor.

    Article  CAS  Google Scholar 

  63. Li, Z., Jiang, Y.-Y. & Fu, Y. Theoretical study on the mechanism of Ni-catalyzed alkyl-alkyl suzuki cross-coupling. Chem. Eur. J. 18, 4345–4357 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Yotsuji, K. et al. Nickel-catalyzed Suzuki–Miyaura coupling of a tertiary iodocyclopropane with wide boronic acid substrate scope: coupling reaction outcome depends on radical species stability. Adv. Synth. Catal. 357, 1022–1028 (2015).

    Article  CAS  Google Scholar 

  65. Yu, C. C., Ng, D. K. P., Chen, B.-L. & Luh, T.-Y. Nickel-catalyzed cross coupling of cyclopropyl grignard reagents with benzylic dithioacetals. Organometallics 13, 1487–1497 (1993).

    Article  Google Scholar 

  66. Eberhart, A. J., Imbriglio, J. E. & Procter, D. J. Nucleophilic ortho allylation of aryl and heteroaryl sulfoxides. Org. Lett. 13, 5882–5885 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y., Chen, Y., Zhang, Z., Liu, S. & Shen, X. Synthesis of stereodefined trisubstituted alkenyl silanes enabled by borane catalysis and nickel catalysis. Org. Lett. 22, 970–975 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Ackermann, L., Kapdi, A. R. & Schulzke, C. Air-stable secondary phosphine oxide or chloride (pre)ligands for cross-couplings of unactivated alkyl chlorides. Org. Lett. 12, 2298–2301 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Malhotra, S., Seng, P. S., Koenig, S. G., Deese, A. J. & Ford, K. A. Chemoselective sp2-sp3 cross-couplings: iron-catalyzed alkyl transfer to dihaloaromatics. Org. Lett. 15, 3698–3701 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Greiner, R., Blanc, R., Petermayer, C., Karaghiosoff, K. & Knochel, P. Preparation of functionalized 2,7-naphthyridines by directed lithiation with (2,2,6,6-tetramethylpiperidyl)lithium and their regioselective iron-catalyzed cross couplings. Synlett 27, 231–236 (2015).

    Article  Google Scholar 

  71. Bellan, A. B., Kuzmina, O. M., Vetsova, V. A. & Knochel, P. Chromium-catalyzed cross-coupling reactions of alkylmagnesium reagents with halo-quinolines and activated aryl chlorides. Synthesis 49, 188–194 (2017).

    CAS  Google Scholar 

  72. Andersen, C. et al. Introduction of cyclopropyl and cyclobutyl ring on alkyl iodides through cobalt-catalyzed cross-coupling. Org. Lett. 21, 2285–2289 (2019). This paper shows a robust method for C(sp3)–C(sp3) cross-coupling of cyclopropyl magnesium bromides.

    Article  CAS  PubMed  Google Scholar 

  73. Petruncio, G., Elahi-Mohassel, S., Girgis, M. & Paige, M. Copper-catalyzed sp3sp3 cross-coupling of turbo grignards with benzyl halides. Tetrahedron Lett. 86, 153516 (2021).

    Article  CAS  Google Scholar 

  74. Piers, E., Jean, M. & Marrs, P. S. Synthesis of vinylcyclopropanes via palladium-catalyzed coupling of cyclopropylzinc halides with vinyl iodides. Total syntheses of (±)-prezizanol and (±)-prezizaene. Tetrahedron Lett. 28, 5075–5078 (1987).

    Article  CAS  Google Scholar 

  75. de Lang, R.-J. & Brandsma, L. The nickel and palladium catalysed stereoselective cross coupling of cyclopropyl nucleophiles with aryl halides. Synth. Commun. 28, 225–232 (2006).

    Article  Google Scholar 

  76. Campbell, J. B., Firor, J. W. & Davenport, T. V. Facile palladium-catalyzed cross-coupling of monoorganozinc halides with 3-iodoanthranilonitriles. Synth. Commun. 19, 2265–2272 (1989).

    Article  CAS  Google Scholar 

  77. Han, C. & Buchwald, S. L. Negishi coupling of secondary alkylzinc halides with aryl bromides and chlorides. J. Am. Chem. Soc. 131, 7532–7533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coleridge, B. M., Bello, C. S. & Leitner, A. General and user-friendly protocol for the synthesis of functionalized aryl- and heteroaryl-cyclopropanes by Negishi cross-coupling reactions. Tetrahedron Lett. 50, 4475–4477 (2009).

    Article  CAS  Google Scholar 

  79. Shu, C. et al. Palladium-catalyzed cross-coupling of cyclopropylmagnesium bromide with aryl bromides mediated by zinc halide additives. J. Org. Chem. 75, 6677–6680 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, Y., Niedermann, K., Han, C. & Buchwald, S. L. Highly selective palladium-catalyzed cross-coupling of secondary alkylzinc reagents with heteroaryl halides. Org. Lett. 16, 4638–4641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chawner, S. J., Cases-Thomas, M. J. & Bull, J. A. Divergent synthesis of cyclopropane-containing lead-like compounds, fragments and building blocks through a cobalt catalyzed cyclopropanation of phenyl vinyl sulfide. Eur. J. Org. Chem. 34, 5015–5024 (2017).

    Article  Google Scholar 

  82. Greszler, S. N., Halvorsen, G. T. & Voight, E. A. Synthesis of substituted cyclopropanecarboxylates via room temperature palladium-catalyzed α-arylation of Reformatsky reagents. Org. Lett. 19, 2490–2493 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Keaveney, S. T., Kundu, G. & Schoenebeck, F. Modular functionalization of arenes in a triply selective sequence: rapid C(sp2) and C(sp3) coupling of C−Br, C−OTf, and C−Cl bonds enabled by a single palladium(I) dimer. Angew. Chem. Int. Ed. 57, 12573–12577 (2018).

    Article  CAS  Google Scholar 

  84. Lutter, F. H. et al. Cobalt‐catalyzed cross‐coupling of functionalized alkylzinc reagents with (hetero)aryl halides. Angew. Chem. Int. Ed. 59, 5546–5550 (2020).

    Article  CAS  Google Scholar 

  85. Yasui, M., Ota, R., Tsukano, C. & Takemoto, Y. Synthesis of all-cis-substituted cyclopropanes through stereocontrolled metalation and Pd-catalyzed Negishi coupling. Org. Lett. 20, 7656–7660 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Mendel, M., Gnägi, L., Dabranskaya, U. & Schoenebeck, F. Rapid and modular access to vinyl cyclopropanes enabled by air-stable palladium(I) dimer catalysis. Angew. Chem. Int. Ed. 62, e202211167 (2022).

    Article  Google Scholar 

  87. An, L., Tong, F.-F., Zhang, S. & Zhang, X. Stereoselective functionalization of racemic cyclopropylzinc reagents via enantiodivergent relay coupling. J. Am. Chem. Soc. 142, 11884–11892 (2020). This report features sequential enantioselective and stereospecific cross-couplings at cyclopropane.

    Article  CAS  PubMed  Google Scholar 

  88. Peters, D., Hornfeldt, A.-B. & Gronowitz, S. Synthesis of 5-cyclopropyluracil and 5-cyclopropylcytosine by the Pd(0)-cat coupling reaction. J. Heterocycl. Chem. 26, 1629–1631 (1991).

    Article  Google Scholar 

  89. Schmitz, W. D. & Romo, D. A new route to 2-substituted thiazolines stille cross couplings of 2-bromothiazolines. Tetrahedron Lett. 37, 4857–4860 (1996).

    Article  CAS  Google Scholar 

  90. Heureux, N. et al. Preparation and applications of a novel bis(tributylstannyl)cyclopropane: a synthetic equivalent of a cyclopropane-1,2-dianion. Tetrahedron Lett. 46, 79–83 (2005).

    Article  CAS  Google Scholar 

  91. Caló, F. P. & Fürstner, A. A heteroleptic dirhodium catalyst for asymmetric cyclopropanation with α-stannyl α-diazoacetate. ‘Stereoretentive’ Stille coupling with formation of chiral quarternary carbon centers. Angew. Chem. Int. Ed. 59, 13900–13907 (2020).

    Article  Google Scholar 

  92. Gagnon, A., Duplessis, M., Alsabeh, P. & Barabé, F. Palladium-catalyzed cross-coupling reaction of tricyclopropylbismuth with aryl halides and triflates. J. Org. Chem. 73, 3604–3607 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Pérez, I., Sestelo, J. P. & Sarandeses, L. A. Palladium-catalyzed cross-coupling reactions of triorganoindium compounds with vinyl and aryl triflates or iodides. Org. Lett. 1, 1267–1269 (1999).

    Article  Google Scholar 

  94. Pérez, I., Sestelo, J. P. & Sarandeses, L. A. Atom-efficient metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles. J. Am. Chem. Soc. 123, 4155–4160 (2001).

    Article  PubMed  Google Scholar 

  95. Yang, S., Jiang, W.-T. & Xiao, B. Tertiary cyclopropyl carbagermatranes: synthesis and cross-coupling. Chem. Commun. 57, 8143–8146 (2021).

    Article  CAS  Google Scholar 

  96. Beaulieu, L.-P. B., Delvos, L. B. & Charette, A. B. Dual role of silanol groups in cyclopropanation and Hiyama–Denmark cross-coupling reactions. Org. Lett. 12, 1348–1351 (2010). This is the only example of cross-coupling of a cyclopropyl silane.

    Article  CAS  PubMed  Google Scholar 

  97. Shintani, R., Fujie, R., Takeda, M. & Nozaki, K. Silylative cyclopropanation of allyl phosphates with silylboronates. Angew. Chem. Int. Ed. 53, 6546–6549 (2014).

    Article  CAS  Google Scholar 

  98. Lee, T. & Hartwig, J. F. Rhodium‐catalyzed enantioselective silylation of cyclopropyl C−H bonds. Angew. Chem. Int. Ed. 55, 8723–8727 (2016).

    Article  CAS  Google Scholar 

  99. Su, Y., Li, Q.-F., Zhao, Y.-M. & Gu, P. Preparation of optically active cis-cyclopropane carboxylates: cyclopropanation of α-silyl stryenes with aryldiazoacetates and desilylation of the resulting silyl cyclopropanes. Org. Lett. 18, 4356–4359 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, L. & Oestreich, M. Copper‐catalyzed enantio‐ and diastereoselective addition of silicon nucleophiles to 3,3‐disubstituted cyclopropenes. Chem. Eur. J. 25, 14304–14307 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Dian, L. & Marek, I. Cobalt-catalyzed diastereoselective and enantioselective hydrosilylation of achiral cyclopropenes. Org. Lett. 22, 4914–4918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dalziel, M. E., Chen, P., Carrera, D. E., Zhang, H. & Gosselin, F. Highly diastereoselective α-arylation of cyclic nitriles. Org. Lett. 19, 3446–3449 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. McCabe Dunn, J. M., Kuethe, J. T., Orr, R. K., Tudge, M. & Campeau, L. C. Development of a palladium-catalyzed α-arylation of cyclopropyl nitriles. Org. Lett. 16, 6314–6317 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Wright, B. A. & Ardolino, M. J. Surprising reactivity in NiXantphos/palladium-catalyzed α-arylation of substituted cyclopropyl nitriles. J. Org. Chem. 84, 4670–4679 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. He, Z. T. & Hartwig, J. F. Palladium-catalyzed α-arylation for the addition of small rings to aromatic compounds. Nat. Commun. 10, 4083 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Roman, D. S. & Charette, A. B. C–H functionalization of cyclopropanes: a practical approach employing a picolinamide auxiliary. Org. Lett. 15, 4394–4397 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Hoshiya, N., Kobayashi, T., Arisawa, M. & Shuto, S. Palladium-catalyzed arylation of cyclopropanes via directing group-mediated C(sp3)–H bond activation to construct quaternary carbon centers: synthesis of cis- and trans-1,1,2-trisubstituted chiral cyclopropanes. Org. Lett. 15, 6202–6205 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Hoshiya, N. et al. Entry to chiral 1,1,2,3-tetrasubstituted arylcyclopropanes by Pd(II)-catalyzed arylation via directing group-mediated C(sp3)-H activation. J. Org. Chem. 82, 2535–2544 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Hoshiya, N., Takenaka, K., Shuto, S. & Uenishi, J. Pd(II)-catalyzed alkylation of tertiary carbon via directing-group-mediated C(sp3)-H activation: synthesis of chiral 1,1,2-trialkyl substituted cyclopropanes. Org. Lett. 18, 48–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Wasa, M., Engle, K. M., Lin, D. W., Yoo, E. J. & Yu, J. Pd(II)-catalyzed enantioselective C–H activation of cyclopropanes. J. Am. Chem. Soc. 133, 19598–19601 (2011). This is the first example of enantioselective catalytic cyclopropyl C–H activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jerhaoui, S., Poutrel, P., Djukic, J. P., Wencel-Delord, J. & Colobert, F. Stereospecific C-H activation as a key step for the asymmetric synthesis of various biologically active cyclopropanes. Org. Chem. Front. 5, 409–414 (2018).

    Article  CAS  Google Scholar 

  112. Jerhaoui, S., Djukic, J. P., Wencel-Delord, J. & Colobert, F. Asymmetric, nearly barrierless C(sp3)-H activation promoted by easily-accessible N-protected aminosulfoxides as new chiral ligands. ACS Catal. 9, 2532–2542 (2019).

    Article  CAS  Google Scholar 

  113. Shen, P. X., Hu, L., Shao, Q., Hong, K. & Yu, J. Q. Pd(II)-catalyzed enantioselective C(sp3)-H arylation of free carboxylic acids. J. Am. Chem. Soc. 140, 6545–6549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhuang, Z. & Yu, J. Q. Pd(II)-catalyzed enantioselective γ-C(sp3)-H functionalizations of free cyclopropylmethylamines. J. Am. Chem. Soc. 142, 12015–12019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chan, K. S. L., Fu, H. Y. & Yu, J. Q. Palladium(II)-catalyzed highly enantioselective C-H arylation of cyclopropylmethylamines. J. Am. Chem. Soc. 137, 2042–2046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rodrigalvarez, J., Reeve, L. A., Miró, J. & Gaunt, M. J. Pd(II)-catalyzed enantioselective C(sp3)-H arylation of cyclopropanes and cyclobutanes guided by tertiary alkylamines. J. Am. Chem. Soc. 144, 3939–3948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rousseaux, S., Liégault, B. & Fagnou, K. Palladium(0)-catalyzed cyclopropane C–H bond functionalization: synthesis of quinoline and tetrahydroquinoline derivatives. Chem. Sci. 3, 244–248 (2012).

    Article  CAS  Google Scholar 

  118. Ladd, C. L., Sustac Roman, D. & Charette, A. B. Palladium-catalyzed ring-opening of cyclopropyl benzamides: synthesis of benzo[c]azepine-1-ones via C(sp3)-H functionalization. Tetrahedron 69, 4479–4487 (2013).

    Article  CAS  Google Scholar 

  119. Ladd, C. L., Sustac Roman, D. & Charette, A. B. Silver-promoted, palladium-catalyzed direct arylation of cyclopropanes: facile access to spiro 3,3′-cyclopropyl oxindoles. Org. Lett. 15, 1350–1353 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Saget, T., Perez, D. & Cramer, N. Synthesis of functionalized spiroindolines via palladium-catalyzed methine C-H arylation. Org. Lett. 15, 1354–1357 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Tsukano, C., Masataka, O. & Takemoto, Y. Synthesis of spirooxindoles from carbamoyl chlorides via cyclopropyl methine C(sp3)–H activation using palladium catalyst. Chem. Lett. 42, 735–755 (2013).

    Article  Google Scholar 

  122. Ladd, C. L. & Charette, A. B. Access to cyclopropyl-fused azacycles via a palladium-catalyzed direct alkenylation strategy. Org. Lett. 18, 6046–6049 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Mayer, C., Ladd, C. L. & Charette, A. B. Utilization of BozPhos as an effective ligand in enantioselective C–H functionalization of cyclopropanes: synthesis of dihydroisoquinolones and dihydroquinolones. Org. Lett. 21, 2639–2644 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Pedroni, J., Saget, T., Donets, P. A. & Cramer, N. Enantioselective palladium(0)-catalyzed intramolecular cyclopropane functionalization: access to dihydroquinolones, dihydroisoquinolones and the BMS-791325 ring system. Chem. Sci. 6, 5164–5171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Saget, T. & Cramer, N. Palladium(0)-catalyzed enantioselective C–H arylation of cyclopropanes: efficient access to functionalized tetrahydroquinolines. Angew. Chem. Int. Ed. 51, 12842–12845 (2012).

    Article  CAS  Google Scholar 

  126. Wu, X., Lei, C., Yue, G. & Zhou, J. Palladium-catalyzed direct cyclopropylation of heterocycles. Angew. Chem. Int. Ed. 54, 9601–9605 (2015).

    Article  CAS  Google Scholar 

  127. Wiest, J. M., Pöthig, A. & Bach, T. Pyrrole as a directing group: regioselective Pd(II)-catalyzed alkylation and benzylation at the benzene core of 2-phenylpyrroles. Org. Lett. 18, 852–855 (2016).

    Article  Google Scholar 

  128. Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C-H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Shi, Y., Gao, Q. & Xu, S. Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)-H borylation of cyclopropanes. J. Am. Chem. Soc. 141, 10599–10604 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Giri, R., Chen, X. & Yu, J. Palladium‐catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Ed. 44, 2112–2115 (2005).

    Article  CAS  Google Scholar 

  131. Yi, L., Ji, T., Chen, K.-Q., Chen, X.-Y. & Rueping, M. Nickel-catalyzed reductive cross-couplings: new opportunities for carbon–carbon bond formations through photochemistry and electrochemistry. CCS Chem. 4, 9–30 (2022).

    Article  CAS  Google Scholar 

  132. Walborsky, H. M. The cyclopropyl radical. Tetrahedron 37, 1625–1651 (1981).

    Article  CAS  Google Scholar 

  133. Mills, L. R., Monteith, J. J., Gomes, G., Aspuru-Guzik, A. & Rousseaux, S. A. L. The cyclopropane ring as a reporter of radical leaving-group reactivity for Ni-catalyzed C(sp3)–O arylation. J. Am. Chem. Soc. 142, 13246–13254 (2020). The cyclopropane ring can act as a useful indicator of the reactivity of different redox-active leaving groups, as seen in this Ni-catalysed arylation of cyclopropanols.

    Article  CAS  PubMed  Google Scholar 

  134. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, P., Le, C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018). This paper contains an example of C(sp3)–C(sp3) coupling at cyclopropane via metallaphotoredox catalysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Behnke, N. E., Sales, Z. S., Li, M. & Herrmann, A. T. Dual photoredox/nickel-promoted alkylation of heteroaryl halides with redox-active esters. J. Org. Chem. 86, 12945–12955 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Intermaddio, N. E., Millet, A., Davis, D. L. & MacMillan, D. W. C. Deoxytrifluoromethylation of alcohols. J. Am. Chem. Soc. 144, 11961–11968 (2022).

    Article  Google Scholar 

  140. Cornella, J. et al. Practical Ni-catalyzed aryl–alkyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc. 138, 2174–2177 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, T.-G. et al. Quaternary centers by nickel-catalyzed cross-coupling of tertiary carboxylic acids and (hetero)aryl zinc reagents. Angew. Chem. Int. Ed. 58, 2454–2458 (2019).

    Article  CAS  Google Scholar 

  142. Qin, T. et al. Nickel-catalyzed Barton decarboxylation and Giese reactions: a practical take on classic transformations. Angew. Chem. Int. Ed. 56, 260–265 (2017).

    Article  CAS  Google Scholar 

  143. Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkyl zinc reagents. Science 352, 801–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, J.-H. et al. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylated with alkyl and aryl bromides. Chem. Eur. J. 20, 15334–15338 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Moragas, T. & Martin, R. Nickel-catalyzed reductive carboxylation of cyclopropyl motifs with carbon dioxide. Synthesis 48, 2816–2822 (2016).

    Article  CAS  Google Scholar 

  147. Liao, J. et al. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 21, 2941–2946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Murarka, S. N-(acyloxy)phthalimides as redox-active esters in cross-coupling reactions. Adv. Synth. Catal. 360, 1735–1753 (2018).

    Article  CAS  Google Scholar 

  149. Karmakar, S., Silamkoti, A., Meanwell, N. A., Mathur, A., Gupta, A. K. Utilization of C(sp3)-carboxylic acids and their redox-active esters in decarboxylative carbon–carbon bond formation. Adv. Synth. Catal. 363, 3693–3736.

  150. Kang, K. & Weix, D. J. Nickel-catalyzed C(sp3)–C(sp3) cross-electrophile coupling of in situ generated NHP esters with unactivated alkyl bromides. Org. Lett. 24, 2853–2857 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Salgeuiro, D. C., Chi, B. K., Guzei, I. A., García-Reynaga, P. & Weix, D. J. Control of redox-active ester reactivity enables a general cross-electrophile approach to access arylated strained rings. Angew. Chem. Int. Ed. 61, e202205673 (2022). An example of reductive coupling applied to synthesize a library of useful 1,1-diaryl cyclopropanes from cyclopropane NHP esters.

    Google Scholar 

  152. West, M. S., Gabbey, A. L., Huestis, M. P. & Rousseaux, S. A. L. Ni-catalyzed reductive cross-coupling of cyclopropylamines and other strained ring NHP esters with (hetero)aryl halides. Org. Lett. 24, 8441–8446 (2022). This report details a reductive coupling developed specifically for the synthesis of 1-arylcyclopropylamines from cyclopropylamine NHP esters.

    Article  CAS  PubMed  Google Scholar 

  153. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li, H. et al. Ni-catalyzed electrochemical decarboxylative C–C couplings in batch and continuous flow. Org. Lett. 20, 1338–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Truesdell, B. L., Hamby, T. B. & Sevov, C. S. General C(sp2)–C(sp3) cross-electrophile coupling enables by overcharge protection of homogenous electrocatalysts. J. Am. Chem. Soc. 142, 5884–5893 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp2–Csp3 coupling. Science 376, 410–416 (2022). A recent electrochemical method that includes examples of cross-coupling at a cyclopropyl bromide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cyclopropyl cations. in Cyclopropane Derived Reactive Intermediates (1990) 117–173 (John Wiley & Sons, Ltd, 1990).

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.L.G. and K.S. contributed equally to all aspects of researching and writing this article. All authors contributed substantially to discussion of the content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sophie A. L. Rousseaux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabbey, A.L., Scotchburn, K. & Rousseaux, S.A.L. Metal-catalysed C–C bond formation at cyclopropanes. Nat Rev Chem 7, 548–560 (2023). https://doi.org/10.1038/s41570-023-00499-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00499-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing