Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolable iminium ions as a platform for N-(hetero)aryl piperidine synthesis

Abstract

Piperidines are prevalent throughout Food and Drug Administration-approved drugs and current drug candidates, and thus robust methods for preparing these heterocycles are desirable for efficiently probing structure–activity relationships during drug discovery campaigns. N-(Hetero)aryl piperidines are particularly important in pharmaceutical applications, but remain difficult to synthesize because traditional approaches based on transition-metal-catalysed cross-coupling or SNAr reactions routinely fail. Here we report a general platform for the rapid synthesis of a range of densely functionalized N-(hetero)aryl piperidine derivatives using a common iminium ion precursor. An expeditious synthesis of bench-stable cyclic iminium salts starting from widely abundant heteroaryl-amine and ketoacrylate feedstocks is disclosed. We then show that these intermediates are readily functionalized, rapidly yielding a variety of complex piperidines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to hindered N-(hetero)aryl piperidines.
Fig. 2: Diversification of iminium salt 1a for rapid synthesis of piperidine analogues.
Fig. 3: Scope of C2-disubstituted piperidines in the one-pot process.
Fig. 4: Sequential C3/C2 difunctionalization of iminium salts.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. The X-ray crystallographic coordinates for compound 1a reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2170178. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Abdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. Piperidine nucleus in the field of drug discovery. Future J. Pharm. Sci. 7, 188 (2021).

    Article  Google Scholar 

  4. Källström, S. & Leino, R. Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. Bioorg. Med. Chem. 16, 601–635 (2008).

    Article  PubMed  Google Scholar 

  5. Liu, G.-Q. & Opatz, T. Recent advances in the synthesis of piperidines: functionalization of preexisting ring systems. Adv. Heterocycl. Chem. 125, 107–234 (2018).

    Article  CAS  Google Scholar 

  6. Laschat, S. & Dickner, T. Stereoselective synthesis of piperidines. Synthesis 2000, 1781–1813 (2000).

    Article  Google Scholar 

  7. Weintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. Recent advances in the synthesis of piperidones and piperidines. Tetrahedron 59, 2953–2989 (2003).

    Article  CAS  Google Scholar 

  8. Zhang, Z., Zhang, X. & Nagib, D. A. Chiral piperidines from acyclic amines via enantioselective radical-mediated δ C–H cyanation. Chem 5, 3127–3134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stateman, L. M., Dare, R. M., Paneque, A. N. & Nagib, D. A. Aza-heterocycles via copper-catalyzed remote C–H desaturation of amines. Chem 8, 210–224 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qu, B. et al. Synthesis of enantioenriched 2-alkyl piperidine derivatives through asymmetric reduction of pyridinium salts. Org. Lett. 18, 4920–4923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qu, B. et al. Enantioselective synthesis of α-(hetero)aryl piperidines through asymmetric hydrogenation of pyridinium salts and its mechanistic insights. Org. Lett. 20, 1333–1337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, M. et al. Asymmetric hydrogenation of pyridinium salts with an iridium phosphole catalyst. Angew. Chem. Int. Ed. 53, 12761–12764 (2014).

    Article  CAS  Google Scholar 

  13. Paruch, K. et al. Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett. 1, 204–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakairi, M. et al. Synthesis and SAR studies of bicyclic amine series GPR119 agonists. Bioorg. Med. Chem. Lett. 22, 5123–5128 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Semple, G. et al. Discovery of the first potent and orally efficacious agonist of the orphan G-protein coupled receptor 119. J. Med. Chem. 51, 5172–5175 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Watson, K. G. et al. An orally bioavailable oxime ether capsid binder with potent activity against human rhinovirus. J. Med. Chem. 46, 3181–3184 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Goel, P. et al. Recent advancement of piperidine moiety in treatment of cancer—a review. Eur. J. Med. Chem. 157, 480–502 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Vlasov, V. M. Nucleophilic substitution of the nitro group, fluorine and chlorine in aromatic compounds. Russ. Chem. Rev. 72, 681–703 (2003).

    Article  CAS  Google Scholar 

  19. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, N. H., Vinogradova, E. V., Surry, D. S. & Buchwald, S. L. Design of new ligands for the palladium-catalyzed arylation of α-branched secondary amines. Angew. Chem., Int. Ed. 54, 8259–8262 (2015).

    Article  CAS  Google Scholar 

  21. Sather, A. C. & Martinot, T. A. Data-rich experimentation enables palladium-catalyzed couplings of piperidines and five-membered (hetero)aromatic electrophiles. Org. Process Res. Dev. 23, 1725–1739 (2019).

    Article  CAS  Google Scholar 

  22. Bolleddula, J. et al. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab. Rev. 46, 379–419 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Kato, K., Jingu, S., Ogawa, N. & Higuchi, S. Differentiation between isomeric oxidative metabolites of a piperidine-containing drug by liquid chromatography–tandem mass spectrometry with stable-isotope tracer technique. Biomed. Chromatogr. 16, 25–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Hunt, J. A. et al. P38 inhibitors: piperidine- and 4-aminopiperidine-substituted naphthyridinones, quinolinones, and dihydroquinazolinones. Bioorg. Med. Chem. Lett. 13, 467–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Larsen, M. A. et al. A modular and diastereoselective 5 + 1 cyclization approach to N-(hetero)aryl piperidines. J. Am. Chem. Soc. 142, 726–732 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Bláha, K. & Červinka, O. Cyclic enamines and imines. Adv. Heterocycl. Chem. 6, 147–227 (1966).

    Article  Google Scholar 

  28. Beng, T. K., Takeuchi, H., Weber, M. & Sarpong, R. Stereocontrolled synthesis of vicinally functionalized piperidines by nucleophilic β-addition of alkyllithiums to α-aryl substituted piperidine enecarbamates. Chem. Commun. 51, 7653–7656 (2015).

    Article  CAS  Google Scholar 

  29. Chen, W., Ma, L., Paul, A. & Seidel, D. Direct α-C–H bond functionalization of unprotected cyclic amines. Nat. Chem. 10, 165–169 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Paul, A. & Seidel, D. α-Functionalization of cyclic secondary amines: Lewis acid promoted addition of organometallics to transient imines. J. Am. Chem. Soc. 141, 8778–8782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, W., Paul, A., Abboud, K. A. & Seidel, D. Rapid functionalization of multiple C–H bonds in unprotected alicyclic amines. Nat. Chem. 12, 545–550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holmberg-Douglas, N., Choi, Y., Aquila, B., Huynh, H. & Nicewicz, D. A. β-Functionalization of saturated aza-heterocycles enabled by organic photoredox catalysis. ACS Catal. 11, 3153–3158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. West, J. A. The chemistry of enamines. J. Chem. Edu. 40, 194 (1963).

    Article  CAS  Google Scholar 

  34. Rappoport, Z. The Chemistry of Enamines (Wiley, 1994).

  35. Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive fluorination of cyclic amines by carbon–carbon cleavage. Science 361, 171–174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25, 1909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor, A. P. et al. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 14, 6611–6637 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Su, M. & Buchwald, S. L. A bulky biaryl phosphine ligand allows for palladium-catalyzed amidation of five-membered heterocycles as electrophiles. Angew. Chem. Int. Ed. 51, 4710–4713 (2012).

    Article  CAS  Google Scholar 

  41. Su, M., Hoshiya, N. & Buchwald, S. L. Palladium-catalyzed amination of unprotected five-membered heterocyclic bromides. Org. Lett. 16, 832–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hartwig, J. F., Richards, S., Baranano, D. & Paul, F. Influences on the relative rates for C–N bond-forming reductive elimination and β-hydrogen elimination of amides. A case study on the origins of competing reduction in the palladium-catalyzed amination of aryl halides. J. Am. Chem. Soc. 118, 3626–3633 (1996).

    Article  CAS  Google Scholar 

  43. Slagt, V. F., de Vries, A. H. M., de Vries, J. G. & Kellogg, R. M. Practical aspects of carbon–carbon cross-coupling reactions using heteroarenes. Org. Process Res. Dev. 14, 30–47 (2010).

    Article  CAS  Google Scholar 

  44. Lad, U. P., Kulkarni, M. A., Desai, U. V. & Wadgaonkar, P. P. Lithium tetrafluoroborate catalyzed highly efficient inter- and intramolecular aza-Michael addition with aromatic amines. C. R. Chim. 14, 1059–1064 (2011).

    Article  CAS  Google Scholar 

  45. Fedotova, A., Kondrashov, E., Legros, J., Maddaluno, J. & Rulev, A. Y. Solvent effects in the aza-Michael addition of anilines. C. R. Chim. 21, 639–643 (2018).

    Article  CAS  Google Scholar 

  46. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Article  Google Scholar 

  47. Aynetdinova, D. et al. Installing the ‘magic methyl’—C–H methylation in synthesis. Chem. Soc. Rev. 50, 5517–5563 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  PubMed  Google Scholar 

  49. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Y. et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev. 116, 422–518 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Gritsenko, R. T. et al. Trifluoromethylation of enamines under acidic conditions. Tetrahedron Lett. 50, 2994–2997 (2009).

    Article  CAS  Google Scholar 

  52. Lennox, A. J. J. et al. Electrochemical aminoxyl-mediated α-cyanation of secondary piperidines for pharmaceutical building block diversification. J. Am. Chem. Soc. 140, 11227–11231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. LaPlante, S. R. et al. Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem. 54, 7005–7022 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, Z. et al. Recent progress toward developing axial chirality bioactive compounds. Eur. J. Med. Chem. 243, 114700 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y.-B., Xiang, S.-H. & Tan, B. in Axially Chiral Compounds (ed Tan, B.) 297–315 (Wiley, 2021); https://doi.org/10.1002/9783527825172.ch11

  56. Feng, T., Wang, S., Liu, Y., Liu, S. & Qiu, Y. Electrochemical desaturative β-acylation of cyclic N-aryl amines. Angew. Chem. Int. Ed. 61, e202115178 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Gribble, E. Phillips, X. Ma, M. Mitcheltree, E. Edelstein, B. Sherry and L.-C. Campeau (Merck & Co., Inc., Rahway, NJ, USA) for helpful advice during the preparation of this manuscript. We thank D. Adpressa (Merck & Co., Inc., Rahway, NJ, USA) for preliminary NMR spectroscopy investigations. We also thank X. Wang (Merck & Co., Inc., Rahway, NJ, USA) for helpful discussions regarding NMR spectroscopy characterization.

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript. A.C.S. and J.W.G. conceived, performed and designed the experiments, analysed the data and wrote the manuscript. M.A.L. conceived, performed and designed the experiments. S.A.B. conceived, designed and performed the NMR spectroscopy experiments and analysed the data. J.A.N. performed the single-crystal X-ray diffraction experiments and analysed the data. Y.J. performed the high-resolution mass spectrometry experiments and analysed the data.

Corresponding author

Correspondence to Aaron C. Sather.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Bo Qu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary sections 1–9, Figs. 1–205, Tables 1–6 and Scheme 1.

Supplementary Data 1

Crystallographic data for 1a, CCDC 2170178.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenwood, J.W., Larsen, M.A., Burgess, S.A. et al. Isolable iminium ions as a platform for N-(hetero)aryl piperidine synthesis. Nat. Synth 2, 1059–1067 (2023). https://doi.org/10.1038/s44160-023-00313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00313-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing