Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation

Abstract

Chiral piperidines are widespread in natural products and drug molecules. However, effective methods for their synthesis from simple starting materials are scarce. Herein, we report a rhodium-catalysed reductive transamination reaction for the rapid preparation of a variety of chiral piperidines and fluoropiperidines from simple pyridinium salts, with excellent diastereo- and enantio-selectivities and functional group tolerance. Thus, key to this reaction is the introduction of a chiral primary amine under reducing conditions, which, in the presence of water, undergoes transamination with the pyridinium nitrogen moiety while inducing chirality on the ring. The method overcomes some notable shortcomings of asymmetric hydrogenation and traditional multistep synthesis, affording various highly valuable chiral piperidines, including those bearing reducible and coordinating functional groups, heterocycles and, importantly, fluorine. The transamination mechanism also allows for alkylated and 15N-labelled piperidines to be easily accessed. The reaction is easily scalable, with multi-hundred-gram scale demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance of piperidines and their synthesis via reduction of pyridines.
Fig. 2: Transfer hydrogenation of pyridinium salts.
Fig. 3: Asymmetric reductive transamination of 2-substitued pyridiniums with (R)- or (S)-PEA.
Fig. 4: Reductive transamination of 2-substitued pyridiniums with other amines.
Fig. 5: Asymmetric reductive transamination to access fluoropiperidines.
Fig. 6: Applications of ART in organic synthesis.
Fig. 7: Examples of large-scale application of ART.
Fig. 8: Mechanistic studies of the ART reaction.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information or from the authors on reasonable request. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: compound 1 (CCDC 2076422), compound 2 (CCDC 2076423), compound 49 (CCDC 2073098) and compound 72 (CCDC 2073099). These data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wiesenfeldt, M. P., Nairoukh, Z., Dalton, T. & Glorius, F. Selective arene hydrogenation for direct access to saturated carbo- and heterocycles. Angew. Chem. Int. Ed. Engl. 58, 10460–10476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, D.-S., Chen, Q.-A., Lu, S.-M. & Zhou, Y.-G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 112, 2557–2590 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Cyrański, M. K. Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773–3811 (2005).

    Article  PubMed  Google Scholar 

  5. Raynor, S. A. et al. A one-step, enantioselective reduction of ethyl nicotinate to ethyl nipecotinate using a constrained, chiral, heterogeneous catalyst. Chem. Commun. 1925–1926 (2000).

  6. Glorius, F., Spielkamp, N., Holle, S., Goddard, R. & Lehmann, C. W. Efficient asymmetric hydrogenation of pyridines. Angew. Chem. Int. Ed. Engl. 43, 2850–2852 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Rueping, M. & Antonchick, A. P. Organocatalytic enantioselective reduction of pyridines. Angew. Chem. Int. Ed. Engl. 46, 4562–4565 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Legault, C. Y. & Charette, A. B. Catalytic asymmetric hydrogenation of N-iminopyridinium ylides: expedient approach to enantioenriched substituted piperidine derivatives. J. Am. Chem. Soc. 127, 8966–8967 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Ruggeri, S. G., Hawkins, J. M., Makowski, T. M., Rutherford, J. L. & Urban, F. J. Pyrrolo[2,3-d]pyrimidine derivatives: their intermediates and synthesis. US patent WO2007012953 (2007).

  10. Ye, Z.-S. et al. Iridium-catalyzed asymmetric hydrogenation of pyridinium salts. Angew. Chem. Int. Ed. Engl. 51, 10181–10184 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Cadu, A., Upadhyay, P. K. & Andersson, P. G. Iridium-catalyzed asymmetric hydrogenation of substituted pyridines. Asian J. Org. Chem. 2, 1061–1065 (2013).

    Article  CAS  Google Scholar 

  12. Chang, M. et al. Asymmetric hydrogenation of pyridinium salts with an iridium phosphole catalyst. Angew. Chem. Int. Ed. Engl. 53, 12761–12764 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Kita, Y., Iimuro, A., Hida, S. & Mashima, K. Iridium-catalyzed asymmetric hydrogenation of pyridinium salts for constructing multiple stereogenic centers on piperidines. Chem. Lett. 43, 284–286 (2014).

    Article  CAS  Google Scholar 

  14. Chen, M.-W., Ye, Z.-S., Chen, Z.-P., Wu, B. & Zhou, Y.-G. Enantioselective synthesis of trifluoromethyl substituted piperidines with multiple stereogenic centers via hydrogenation of pyridinium hydrochlorides. Org. Chem. Front. 2, 586–589 (2015).

    Article  CAS  Google Scholar 

  15. Qu, B. et al. Synthesis of enantioenriched 2-alkyl piperidine derivatives through asymmetric reduction of pyridinium salts. Org. Lett. 18, 4920–4923 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, L.-S., Wang, F., Ye, X.-Y., Chen, G.-Q. & Zhang, X. Asymmetric hydrogenation of 2-aryl-3-phthalimidopyridinium salts: synthesis of piperidine derivatives with two contiguous stereocenters. Org. Lett. 22, 8882–8887 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Qu, B. et al. Enantioselective synthesis of α-(hetero)aryl piperidines through asymmetric hydrogenation of pyridinium salts and its mechanistic insights. Org. Lett. 20, 1333–1337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie, Y., Pan, H., Liu, M., Xiao, X. & Shi, Y. Progress in asymmetric biomimetic transamination of carbonyl compounds. Chem. Soc. Rev. 44, 1740–1748 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Park, S.-J., Cho, C.-G. & Lee, K.-I. Transamination of dimethylaminomethyleneoxindole. Bull. Korean Chem. Soc. 25, 349–350 (2004).

    Article  CAS  Google Scholar 

  20. Shen, H. & Xie, Z. Titanacarborane amide catalyzed transamination of guanidines. Organometallics 27, 2685–2687 (2008).

    Article  CAS  Google Scholar 

  21. Klein, V., Schuster, F. & Tsogoeva, S. Autocatalytic double sigma-bond C(sp2)–N transamination metathesis reaction. Preprint at https://doi.org/10.26434/chemrxiv-2022-m6k1v (2022).

  22. Li, C., Wang, C., Villa-Marcos, B. & Xiao, J. Chiral counteranion-aided asymmetric hydrogenation of acyclic imines. J. Am. Chem. Soc. 130, 14450–14451 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Li, C. & Xiao, J. Asymmetric hydrogenation of cyclic imines with an ionic Cp*Rh(III) catalyst. J. Am. Chem. Soc. 130, 13208–13209 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, C., Li, C., Wu, X., Pettman, A. & Xiao, J. pH-Regulated asymmetric transfer hydrogenation of quinolines in water. Angew. Chem. Int. Ed. Engl. 48, 6524–6528 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, X., Li, X., King, F. & Xiao, J. Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water. Angew. Chem. Int. Ed. Engl. 44, 3407–3411 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, J., Tang, W., Pettman, A. & Xiao, J. Efficient and chemoselective reduction of pyridines to tetrahydropyridines and piperidines via rhodium-catalyzed transfer hydrogenation. Adv. Synth. Catal. 355, 35–40 (2013).

    Article  CAS  Google Scholar 

  27. Zhou, G. et al. N,O- vs N,C-chelation in half-sandwich iridium complexes: a dramatic effect on enantioselectivity in asymmetric transfer hydrogenation of ketones. ACS Catal. 8, 8020–8026 (2018).

    Article  CAS  Google Scholar 

  28. Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Zuend, S. J., Coughlin, M. P., Lalonde, M. P. & Jacobsen, E. N. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature 461, 968–970 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, W. et al. Cooperative catalysis through noncovalent interactions. Angew. Chem. Int. Ed. Engl. 52, 1668–1672 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zincke, T., Zincke, T. & Würker, W. Ueber Dinitrophenylpyridiniumchlorid und dessen Umwandlungsproducte. Justus Liebigs Ann. Chem. 338, 107–141 (1904).

    Article  Google Scholar 

  32. Vorberg, R. et al. Effect of partially fluorinated N-alkyl-substituted piperidine-2-carboxamides on pharmacologically relevant properties. ChemMedChem 11, 2216–2239 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  PubMed  Google Scholar 

  34. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Inoue, M., Sumii, Y. & Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5, 10633–10640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nairoukh, Z., Wollenburg, M., Schlepphorst, C., Bergander, K. & Glorius, F. The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process. Nat. Chem. 11, 264–270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagener, T. et al. Accessing (multi)fluorinated piperidines using heterogeneous hydrogenation. ACS Catal. 10, 12052–12057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bock, M. G. & Longmore, J. Bradykinin antagonists: new opportunities. Curr. Opin. Chem. Biol. 4, 401–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Munoz, M., Rosso, M. & Covenas, R. A new frontier in the treatment of cancer: NK-1 receptor antagonists. Curr. Med. Chem. 17, 504–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Penning, T. D. et al. Optimization of phenyl-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase inhibitors: identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a highly potent and efficacious inhibitor. J. Med. Chem. 53, 3142–3153 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Grozavu, A. et al. The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation. Nat. Chem. 11, 242–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Hjelmgaard, T., Gardette, D., Tanner, D. & Aitken, D. J. Synthesis of (+)-coniceine via reductive photocyclization of dienamides: an entry to indolizidines. Tetrahedron: Asymmetry 18, 671–678 (2007).

    Article  CAS  Google Scholar 

  43. Gommermann, N. & Knochel, P. Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(+)-coniine. Chem. Commun. 36, 2324–2325 (2004).

  44. Lebrun, S., Couture, A., Deniau, E. & Grandclaudon, P. Strategy for the assembly of chiral bicyclic lactams: a concise synthetic route to (-)-coniceine. Synthesis 2008, 2771–2775 (2008).

    Article  Google Scholar 

  45. Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, Y. et al. A mechanistic investigation of an iridium-catalyzed asymmetric hydrogenation of pyridinium salts. Tetrahedron 74, 2182–2190 (2018).

    Article  CAS  Google Scholar 

  47. Vanderwal, C. D. Reactivity and synthesis inspired by the Zincke ring-opening of pyridines. J. Org. Chem. 76, 9555–9567 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Stupnikova, S., Petushkova, E., Muceniece, D. & Lūsis, V. Recyclization of 1,4-dihydropyridine derivatives in acidic medium. Chem. Heterocycl. Compd. 43, 41–49 (2007).

    Article  CAS  Google Scholar 

  49. Manescalchi, F., Nardi, A. R. & Savoia, D. Reductive amination of 1,4- and 1,5-dicarbonyl compounds with (S)-valine methyl ester. Synthesis of (S)-2-phenylpyrrolidine and (S)-2-phenylpiperidine. Tetrahedron Lett. 35, 2775–2778 (1994).

    Article  CAS  Google Scholar 

  50. Zhang, L.-D., Zhong, L.-R., Xi, J., Yang, X.-L. & Yao, Z.-J. Enantioselective total synthesis of lycoposerramine-Z using chiral phosphoric acid catalyzed intramolecular Michael addition. J. Org. Chem. 81, 1899–1904 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi, Y. & Umekubo, N. Direct asymmetric Michael reaction of α,β-unsaturated aldehydes and ketones catalyzed by two secondary amine catalysts. Angew. Chem. Int. Ed. Engl. 57, 1958–1962 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, J. et al. N-Alkyl-1,5-dideoxy-1,5-imino-l-fucitols as fucosidase inhibitors: synthesis, molecular modelling and activity against cancer cell lines. Bioorg. Chem. 84, 418–433 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Pettman (Pfizer) and J. Leonard (AstraZeneca) for advice, C. Robertson (University of Liverpool) for X-ray structure determination and P. Colbon (Liverpool ChiroChem) for discussions and technical assistance. We thank Pfizer (J.J.W), University of Liverpool (J.J.W., Z.Y.C., J.H.B., X.F.W.) and Innovate UK Knowledge Transfer Partnership (KTP11214, R.G.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.X. conceived and directed the study. J.J.W. and Z.Y.C. designed and performed the experiments with contributions from C.Y.P, X.F.W., S.Y.Z. and J.W.R. J.H.B. and R.G. performed the mechanistic studies. J.X., J.J.W., J.H.B. and Z.Y.C. wrote the manuscript. All the authors contributed to the analysis and interpretation of the data.

Corresponding author

Correspondence to Jianliang Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests. Part of the results were published in a patent (WO2015145143/US20170107208A1, J.X. and J.J.W.), which has expired.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Tables 1–8, methods and references.

Supplementary Data 1

Crystallographic data for compound 1.

Supplementary Data 2

Crystallographic data for compound 2.

Supplementary Data 3

Crystallographic data for compound 49.

Supplementary Data 4

Crystallographic data for compound 72.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Chen, Z., Barnard, J.H. et al. Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation. Nat Catal 5, 982–992 (2022). https://doi.org/10.1038/s41929-022-00857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00857-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing