Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-carbon labelling of active pharmaceutical ingredients enabled by a three-gas surrogate hydroformylation

Abstract

Drug metabolism and pharmacokinetic studies play a crucial role in drug discovery and development programmes, assessing a lead drug candidate’s efficacy and safety profile. Quantitative bioanalytical assessment of analytes with mass spectrometry requires the use of stable carbon-13-labelled compounds with a molecular mass difference of ≥3 daltons. The incorporation of three or more carbon isotopes into drug candidates is not trivial, often requiring lengthy and costly syntheses. Here we report a dual catalytic strategy for the synthesis of multi-carbon-labelled isotopologues of active pharmaceutical ingredients. This approach uses isotopically labelled gas surrogates in a three-chamber reactor for sequential release of alkenes, carbon monoxide and hydrogen followed by low-pressure hydroformylation to generate multi-labelled alkyl aldehydes. The method’s utility has been demonstrated through the synthesis of multiple labelled N-alkyl bioactive compounds, site-selective carbon-13 and deuterium introduction and for triple-carbon labelling of small molecules combined with α-functionalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multi-carbon labelling via three-gas surrogate hydroformylation.
Fig. 2: Development of the three-gas surrogate hydroformylation.
Fig. 3: Scope of the multi-carbon labelling strategy.
Fig. 4: Further utilization of the multi-carbon labelling strategy.
Fig. 5: Adaptation of the hydroformylation approach for deuterium labelling with D2O.

Similar content being viewed by others

Data availability

The data in support and related to this study are available within the paper and the Supplementary Information.

References

  1. Isin, E. M., Elmore, C. S., Nilsson, G. N., Thompson, R. A. & Weidolf, L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 25, 532–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    Article  CAS  Google Scholar 

  4. Wen, B. & Zhu, M. Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab. Rev. 47, 71–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Cuyckens, F. Mass spectrometry in drug metabolism and pharmacokinetics: current trends and future perspectives. Rapid Commun. Mass Spectrom. 33, 90–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Z. J. et al. Hyperpolarized 13C MRI: state of the art and future directions. Radiology 291, 273–284 (2019).

    Article  PubMed  Google Scholar 

  7. Liu, R. H. et al. Isotopically labeled analogues for drug quantitation. Anal. Chem. 74, 618–626 (2002).

    Article  Google Scholar 

  8. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C−H Functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    Article  CAS  Google Scholar 

  9. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foster, A. B. Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol. Sci. 5, 524–527 (1984).

    Article  CAS  Google Scholar 

  11. Marathe, P., Shyu, W. & Humphreys, W. The use of radiolabeled compounds for ADME studies in discovery and exploratory development. Curr. Pharm. Des. 10, 2991–3008 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Elmore, C. S. The use of isotopically labeled compounds in drug discovery. Annu. Rep. Med. Chem. 44, 515–534 (2009).

    CAS  Google Scholar 

  13. Atzrodt, J., Derdau, V. & Loewe, C. in Drug Discovery and Evaluation: Methods in Clinical Pharmacology (eds Hock, F. J. & Gralinski, M. R.) 1–19 (Springer International, 2017).

  14. Bragg, R. A., Sardana, M., Artelsmair, M. & Elmore, C. S. New trends and applications in carboxylation for isotope chemistry. J. Label. Compd. Radiopharm. 61, 934–948 (2018).

    Article  CAS  Google Scholar 

  15. Szabolcs, A., Szammer, J. & Noszkó, L. A new method for the preparation of carboxyl-labelled aliphatic carboxylic acids. Tetrahedron 30, 3647–3648 (1974).

    Article  CAS  Google Scholar 

  16. Hinsinger, K. & Pieters, G. The emergence of carbon isotope exchange. Angew. Chem. Int. Ed. 58, 9678–9680 (2019).

    Article  CAS  Google Scholar 

  17. Gauthier, D. R., Rivera, N. R., Yang, H., Schultz, D. M. & Shultz, C. S. Palladium-catalyzed carbon isotope exchange on aliphatic and benzoic acid chlorides. J. Am. Chem. Soc. 140, 15596–15600 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Kingston, C. et al. Direct carbon isotope exchange through decarboxylative carboxylation. J. Am. Chem. Soc. 141, 774–779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tortajada, A. et al. Catalytic decarboxylation/carboxylation platform for accessing isotopically labeled carboxylic acids. ACS Catal. 9, 5897–5901 (2019).

    Article  CAS  Google Scholar 

  20. Destro, G. et al. Dynamic carbon isotope exchange of pharmaceuticals with labeled CO2. J. Am. Chem. Soc. 141, 780–784 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Destro, G. et al. Transition‐metal‐free carbon isotope exchange of phenyl acetic acids. Angew. Chem. Int. Ed. 59, 13490–13495 (2020).

    Article  CAS  Google Scholar 

  22. Babin, V. et al. Photochemical strategy for carbon isotope exchange with CO2. ACS Catal. 11, 2968–2976 (2021).

    Article  CAS  Google Scholar 

  23. Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Kong, D. et al. Fast carbon isotope exchange of carboxylic acids enabled by organic photoredox catalysis. J. Am. Chem. Soc. 143, 2200–2206 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Feng, M. et al. Direct carbon isotope exchange of pharmaceuticals via reversible decyanation. J. Am. Chem. Soc. 143, 5659–5665 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Reilly, S. W., Lam, Y.-h, Ren, S. & Strotman, N. A. Late-stage carbon isotope exchange of aryl nitriles through Ni-catalyzed C–CN bond activation. J. Am. Chem. Soc. 143, 4817–4823 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Pipal, R. W. et al. Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature 589, 542–547 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Carr, R. M., Cable, K. M., Newman, J. J. & Sutherland, D. R. Syntheses of isotopically labelled angiotensin II receptor antagonist GR138950X. J. Label. Compd. Radiopharm. 38, 453–470 (1996).

    Article  CAS  Google Scholar 

  29. Pedersen, S. K. et al. Main element chemistry enables gas-cylinder-free hydroformylations. Nat. Catal. 3, 843–850 (2020).

    Article  CAS  Google Scholar 

  30. Ricci, A. (ed.) Amino Group Chemistry: From Synthesis to the Life Sciences (Wiley, 2008).

    Google Scholar 

  31. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Galan, B. R., Gembicky, M., Dominiak, P. M., Keister, J. B. & Diver, S. T. Carbon monoxide-promoted carbene insertion into the aryl substituent of an N-heterocyclic carbene ligand: Buchner reaction in a ruthenium carbene complex. J. Am. Chem. Soc. 127, 15702–15703 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Beach, N. J., Camm, K. D. & Fogg, D. E. Hydrogenolysis versus methanolysis of first-and second-generation grubbs catalysts: rates, speciation, and implications for tandem catalysis. Organometallics 29, 5450–5455 (2010).

    Article  CAS  Google Scholar 

  34. Jawiczuk, M., Marczyk, A. & Trzaskowski, B. Decomposition of ruthenium olefin metathesis catalyst. Catalysts 10, 887–887 (2020).

    Article  CAS  Google Scholar 

  35. Breit, B. & Seiche, W. Self-assembly of bidentate ligands for combinatorial homogeneous catalysis based on an A-T base-pair model. Angew. Chem. Int. Ed. 44, 1640–1643 (2005).

    Article  CAS  Google Scholar 

  36. Seiche, W., Schuschkowski, A. & Breit, B. Bidentate ligands by self-assembly through hydrogen bonding: a general room temperature/ambient pressure regioselective hydroformylation of terminal alkenes. Adv. Synth. Catal. 347, 1488–1494 (2005).

    Article  CAS  Google Scholar 

  37. Ulman, M. & Grubbs, R. H. Relative reaction rates of olefin substrates with ruthenium(II) carbene metathesis initiators. Organometallics 17, 2484–2489 (1998).

    Article  CAS  Google Scholar 

  38. Won, E.-J., Yun, H.-Y., Lee, D.-H. & Shin, K.-H. Application of compound-specific isotope analysis in environmental forensic and strategic management avenue for pesticide residues. Molecules 26, 4412–4412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friis, S. D., Skrydstrup, T. & Buchwald, S. L. Mild Pd-catalyzed aminocarbonylation of (hetero)aryl bromides with a palladacycle precatalyst. Org. Lett. 16, 4296–4299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Collin, H. P. et al. COtab: expedient and safe setup for Pd-catalyzed carbonylation chemistry. Org. Lett. 21, 5775–5778 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Friis, S. D., Lindhardt, A. T. & Skrydstrup, T. The development and application of two-chamber reactors and carbon monoxide precursors for safe carbonylation reactions. Acc. Chem. Res. 49, 594–605 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen, D. U., Neumann, K. T., Lindhardt, A. T. & Skrydstrup, T. Recent developments in carbonylation chemistry using [13C]CO, [11C]CO, and [14C]CO. J. Label. Compd. Radiopharm. 61, 949–987 (2018).

    Article  CAS  Google Scholar 

  43. List, B. Direct catalytic asymmetric α-amination of aldehydes. J. Am. Chem. Soc. 124, 5656–5657 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Reed-Berendt, B. G., Latham, D. E., Dambatta, M. B. & Morrill, L. C. Borrowing hydrogen for organic synthesis. ACS Cent. Sci. 7, 570–585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fleischer, I. et al. From olefins to alcohols: efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angew. Chem. 125, 3021–3025 (2013).

    Article  Google Scholar 

  46. Hollmann, D., Bähn, S., Tillack, A. & Beller, M. N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chem. Commun. 27, 3199–3201 (2008).

    Article  Google Scholar 

  47. Flinker, M. et al. Efficient water reduction with sp3-sp3 diboron(4) compounds: application to hydrogenations, H–D exchange reactions, and carbonyl reductions. Angew. Chem. Int. Ed. 56, 15910–15915 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following funding agencies for supporting this research: The Danish National Research Foundation (grant no. DNRF118), NordForsk (grant no. 85378), European Union’s Horizon 2020 research and innovation programme under grant agreement 862179 and Marie Skłodowska-Curie grant agreement 859910. Furthermore, we thank K. Baldvinsson for his generous donation of Citanest. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Contributions

H.G.G. and T.S. devised the original idea. H.C.D.H., S.K., H.G.G. and T.S. conceptualized the strategy. H.C.D.H., S.K., H.G.G. and T.S. designed the experiments. H.C.D.H., S.K., H.G.G., J.B. and J.K. performed the experiments. H.G.G. and T.S. wrote the manuscript.

Corresponding authors

Correspondence to Haraldur G. Gudmundsson or Troels Skrydstrup.

Ethics declarations

Competing interests

T.S. is co-owner of SyTracks A/S, which commercializes silacarboxylic acid 2. All remaining authors have no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, general experimental details and procedures, Discussion, Tables 1 and 2, NMR spectra and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammershøj, H.C.D., Gudmundsson, H.G., Kjærsgaard, S. et al. Multi-carbon labelling of active pharmaceutical ingredients enabled by a three-gas surrogate hydroformylation. Nat. Synth 2, 243–250 (2023). https://doi.org/10.1038/s44160-022-00223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00223-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing