Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed methylene C(sp3)–H lactamization and cycloamination enabled by chlorinated pyridine–pyridone ligands

Abstract

Recent developments of bifunctional ligands have rapidly advanced palladium-catalysed C(sp3)–H activation reactions directed by native carboxylic acids. However, using this approach in inter- or intramolecular C(sp3)–H amination reactions is often hampered by N-coordination overriding the directing effect of the native carboxyl group. Here we report the design and development of chlorinated pyridine–pyridone ligands, which can overcome N-coordination and enable exclusive carboxylic-acid-directed lactamization and cycloamination of N-protected ω-amino acids. The compartmentalization of directed C(sp3)–H activation and C(sp3)–N bond formation in this reaction is distinct from existing C(sp3)–H amination approaches, in which both processes are directed by nitrogen. The protocols described in this report transform linear ω-amino acids into valuable cyclic β-amino acids possessing γ- and δ-lactam, pyrrolidine and tetrahydroquinoline scaffolds pertinent to drug discovery. The utility of this process was demonstrated by the formal synthesis of stemoamide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C–H activation and the construction of lactams and cyclic amines.
Fig. 2: Overview of reaction development.
Fig. 3: Preliminary mechanistic investigations.
Fig. 4: Computational analysis of the origins of acid- versus amide-directed C–H activation.
Fig. 5: Substrate scope for the carboxylic-acid-directed β-C–H γ- and δ-lactamization reaction.
Fig. 6: Substrate scope for the carboxylic-acid-directed β-C–H cycloamination reaction.
Fig. 7: Applications of the C–H lactamization reaction in natural product synthesis and the use of chlorinated ligands to improve the related C–H lactonization reaction.

Similar content being viewed by others

Data availability

All data are in the Supplementary Information. Computational data are available on Figshare: https://doi.org/10.6084/m9.figshare.25345330.v1 (ref. 53).

References

  1. Kittakoop, P., Mahidol, C. & Ruchirawat, S. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr. Top. Med. Chem. 14, 239–252 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Cushnie, T. P. T., Cushnie, B. & Lamb, A. J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 44, 377–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Jeffrey, J. L. & Sarpong, R. Intramolecular C(sp3)–H amination. Chem. Sci. 4, 4092–4106 (2013).

    Article  CAS  Google Scholar 

  5. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. He, C., Whitehurst, W. G. & Gaunt, M. J. Palladium-catalyzed C(sp3)–H bond functionalization of aliphatic amines. Chem 5, 1031–1058 (2019).

    Article  CAS  Google Scholar 

  8. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Che, C. M., Lo, V. K. Y., Zhou, C. Y. & Huang, J. S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Roizen, J. L., Harvey, M. E. & Bois, J. D. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paradine, S. M. & White, M. C. Iron-catalyzed intramolecular allylic C–H amination. J. Am. Chem. Soc. 134, 2036–2039 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Hennessy, E. T. & Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed, direct C–H bond amination. Science 340, 591–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Michaudel, Q., Thevenet, D. & Baran, P. S. Intermolecular Ritter-type C–H amination of unactivated sp3 carbons. J. Am. Chem. Soc. 134, 2547–2550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, T., Mei, T. S. & Yu, J. Q. γ,δ,ε-C(sp3)–H functionalization through directed radical H-abstraction. J. Am. Chem. Soc. 137, 5871–5874 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakafuku, K. M. et al. Enantioselective radical C–H amination for the synthesis of β-amino alcohols. Nat. Chem. 12, 697–704 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ali, S. Z. et al. Allylic C–H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis. Science 376, 276–283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheung, K. P. S., Fang, J., Mukherjee, K., Mihranyan, A. & Gevorgyan, V. Asymmetric intermolecular allylic C–H amination of alkenes with aliphatic amines. Science 378, 1207–1213 (2022).

    Article  Google Scholar 

  19. Thu, H. Y., Yu, W. Y. & Che, C. M. Intermolecular amidation of unactivated sp2 and sp3 C–H bonds via palladium-catalyzed cascade C–H activation/nitrene insertion. J. Am. Chem. Soc. 128, 9048–9049 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. He, J., Shigenari, T. & Yu, J.-Q. Palladium(0)/PAr3-catalyzed intermolecular amination of C(sp3)–H bonds: synthesis of β-amino acids. Angew. Chem. Int. Ed. 127, 6645–6649 (2015).

    Article  Google Scholar 

  21. Wasa, M. & Yu, J. Q. Synthesis of β-, γ-, and δ-lactams via Pd(II)-catalyzed C–H activation reactions. J. Am. Chem. Soc. 130, 14058–14059 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Nadres, E. T. & Daugulis, O. Heterocycle synthesis via direct C–H/N–H coupling. J. Am. Chem. Soc. 134, 7–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp3)–H and C(sp2)–H bonds at γ and δ positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, J., Zhao, X. J., Cao, P., Liu, J. K. & Wu, B. Polycyclic azetidines and pyrrolidines via palladium-catalyzed intramolecular amination of unactivated C(sp3)–H bonds. Org. Lett. 19, 4880–4883 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Neumann, J. J., Rakshit, S., Droge, T. & Glorius, F. Palladium-catalyzed amidation of unactivated C(sp3)–H bonds: from anilines to indolines. Angew. Chem. Int. Ed. 48, 6892–6895 (2009).

    Article  CAS  Google Scholar 

  26. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Smalley, A. P., Cuthbertson, J. D. & Gaunt, M. J. Palladium-catalyzed enantioselective C–H activation of aliphatic amines using chiral anionic BINOL-phosphoric acid ligands. J. Am. Chem. Soc. 139, 1412–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Nappi, M., He, C., Whitehurst, W. G., Chappell, B. G. N. & Gaunt, M. J. Selective reductive elimination at alkyl palladium(IV) by dissociative ligand ionization: catalytic C(sp3)–H amination to azetidines. Angew. Chem. Int. Ed. 130, 3232–3236 (2018).

    Article  Google Scholar 

  29. Liu, S. et al. Ligand enabled Pd(II)-catalyzed γ-C(sp3)–H lactamization of native amides. J. Am. Chem. Soc. 143, 21657–21666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhuang, Z. et al. Ligand-enabled β-C(sp3)–H lactamization of tosyl-protected aliphatic amides using a practical oxidant. Angew. Chem. Int. Ed. 61, e202207354 (2022).

  31. He, G., Zhang, S. Y., Nack, W. A., Li, Q. & Chen, G. Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ-C(sp3)–H bonds. Angew. Chem. Int. Ed. 52, 11124–11128 (2013).

    Article  CAS  Google Scholar 

  32. Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science 374, 1281–1285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sheng, T. et al. One-step synthesis of β-alkylidene-γ-lactones via ligand-enabled β,γ-dehydrogenation of aliphatic acids. J. Am. Chem. Soc. 144, 12924–12933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan, H. S. S., Yang, J.-M. & Yu, J.-Q. Catalyst-controlled site-selective methylene C–H lactonization of dicarboxylic acids. Science 376, 1481–1487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uttry, A., Mal, S. & Van Gemmeren, M. Late-stage β-C(sp3)–H deuteration of carboxylic acids. J. Am. Chem. Soc. 143, 10895–10901 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, L., Meng, G. & Yu, J.-Q. Ligand-enabled Pd(II)-catalyzed β-methylene C(sp3)–H arylation of free aliphatic acids. J. Am. Chem. Soc. 144, 20550–20553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, J. M. et al. Regio-controllable [2+2] benzannulation with two adjacent C(sp3)–H bonds. Science 380, 639–644 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Kang, G. et al. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Tomberg, A. et al. Relative strength of common directing groups in palladium-catalyzed aromatic C−H activation. iScience 20, 373–391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, C. & Falck, J. R. N-Acylsulfonamide assisted tandem C−H olefination/annulation: synthesis of isoindolinones. Org. Lett. 13, 1214–1217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Péron, F., Fossey, C., Cailly, T. & Fabis, F. N-Tosylcarboxamide as a transformable directing group for Pd-catalyzed C–H ortho-arylation. Org. Lett. 14, 1827–1829 (2012).

    Article  PubMed  Google Scholar 

  42. Péron, F., Fossey, C., Sopkova-Deoliveirasantos, J., Cailly, T. & Fabis, F. Room-temperature ortho-alkoxylation and -halogenation of N-tosylbenzamides by using palladium(II)-catalyzed C–H activation. Chem. Eur. J. 20, 7507–7513 (2014).

    Article  PubMed  Google Scholar 

  43. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Romero, E. A. et al. Understanding the activity and enantioselectivity of acetyl-protected aminoethyl quinoline ligands in palladium-catalyzed β-C(sp3)–H bond arylation reactions. J. Am. Chem. Soc. 141, 16726–16733 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Hiesinger, K., Dar’In, D., Proschak, E. & Krasavin, M. Spirocyclic scaffolds in medicinal chemistry. J. Med. Chem. 64, 150–183 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Marson, C. M. New and unusual scaffolds in medicinal chemistry. Chem. Soc. Rev. 40, 5514–5533 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J. R. et al. Palladium-catalyzed aerobic oxidation of amines. Tetrahedron Lett. 47, 8293–8297 (2006).

    Article  CAS  Google Scholar 

  48. Pilli, R. A. & Ferreira de Oliveira, M. C. Recent progress in the chemistry of the Stemona alkaloids. Nat. Prod. Rep. 17, 117–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Pilli, R. A., Rosso, G. B. & Ferreira de Oliveira, M. D. C. The chemistry of Stemona alkaloids: an update. Nat. Prod. Rep. 27, 1908–1937 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Davies, S. G. et al. Diastereoselective Ireland–Claisen rearrangements of substituted allyl β-amino esters: applications in the asymmetric synthesis of C(5)-substituted transpentacins. Org. Biomol. Chem. 12, 2702–2728 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Faraggi, T. M., Li, W. & MacMillan, D. W. C. Decarboxylative oxygenation via photoredox catalysis. Isr. J. Chem. 60, 410–415 (2020).

    Article  CAS  Google Scholar 

  52. Chavan, S. P., Harale, K. R., Puranik, V. G. & Gawade, R. L. Formal synthesis of (−)-stemoamide using a useful epimerization at C-8. Tetrahedron Lett. 53, 2647–2650 (2012).

    Article  CAS  Google Scholar 

  53. Palladium-catalysed methylene C(sp3)–H lactamization and cycloamination enabled by chlorinated pyridine–pyridone ligands. Figshare https://doi.org/10.6084/m9.figshare.25345330.v1 (2024).

Download references

Acknowledgements

We thank M. Tomanik and K. Wu for proofreading and providing helpful suggestions in preparing the manuscript. We acknowledge The Scripps Research Institute, NIH (NIGMS, 2R01GM084019) and the Croucher Foundation (postdoctoral fellowship to H.S.S.C) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y. and H.S.S.C. conceived the concept. H.S.S.C. discovered and developed the lactamization and cycloamination reactions, designed and synthesized ligands L2, L4, L7, L9, L10L16 and L18, conducted preliminary mechanistic studies and finished the formal synthesis of stemoamide. Y.L. performed the computational studies. H.S.S.C. and J.-Q.Y. wrote the manuscript. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

J.-Q.Y. and H.S.S.C. are inventors on a patent application related to this work (US Patent Application 63/551,249) filed by The Scripps Research Institute. The authors declare no other competing interests.

Peer review

Peer review information

Nature Synthesis thanks Chuan He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1 and 2, synthetic procedures, computational modelling details, control experiments and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H.S.S., Lu, Y. & Yu, JQ. Palladium-catalysed methylene C(sp3)–H lactamization and cycloamination enabled by chlorinated pyridine–pyridone ligands. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00517-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing