Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical gold-catalysed biocompatible C(sp2)–C(sp) coupling

Abstract

Gold-catalysed oxidative coupling reactions often require strong oxidants because of the high redox potential of Au(i)/Au(iii) (1.41 V versus the saturated calomel electrode), resulting in poor reaction economy and functional group compatibility. Here we report a dinuclear gold-catalysed C(sp2)–C(sp) coupling reaction between structurally diverse alkynes and arylhydrazines under electrochemical conditions. This approach provides a practical oxidative C–C coupling reaction that avoids the use of synthetic oxidants and instead produces H2. This method exhibits excellent functional group compatibility towards compounds such as alcohols, amines, sulfides and electron-rich arenes, which possess functional groups sensitive to oxidizing agents. This synthetic robustness is further shown by the successful late-stage modification of different kinds of alkynes tethered to biomolecules such as amino acids, peptides, nucleotides and saccharides. Mechanistic studies suggest a first aryl radical oxidative addition step with Au(i), followed by anodic oxidation to generate the highly electrophilic Ar–Au(iii) species for subsequent σ-activation of alkynes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance of alkynes in organic synthesis (appealing for gold-catalysed C(sp)–C(sp2) coupling reactions and biocompatibility).
Fig. 2: Different ligands for the gold catalysts.
Fig. 3: Mechanistic studies.
Fig. 4: Proposed reaction mechanism.

Similar content being viewed by others

Data availability

All of the data supporting the findings of this study are available within the article and its Supplementary Information files. Source data are provided with this paper.

References

  1. Ritleng, V., Sirlin, C. & Pfeffer, M. Ru-, Rh-, and Pd-catalyzed C–C bond formation involving C–H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem. Rev. 102, 1731–1770 (2002).

    Article  CAS  Google Scholar 

  2. Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 107, 3180–3211 (2007).

    Article  CAS  Google Scholar 

  3. Zhang, G., Peng, Y., Cui, L. & Zhang, L. Gold-catalyzed homogeneous oxidative cross-coupling reactions. Angew. Chem. Int. Ed. Engl. 48, 3112–3115 (2009).

    Article  CAS  Google Scholar 

  4. Wang, Q., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Gold-catalyzed intermolecular oxidative diyne cyclizations via 1,6-carbene transfer. Adv. Synth. Catal. 362, 755–759 (2020).

    Article  CAS  Google Scholar 

  5. Ball, L. T., Lloyd-Jones, G. C. & Russell, C. A. Gold-catalyzed direct arylation. Science 337, 1644–1648 (2012).

    Article  CAS  Google Scholar 

  6. Ball, L. T., Lloyd-Jones, G. C. & Russell, C. A. Gold-catalyzed oxidative coupling of arylsilanes and arenes: origin of selectivity and improved precatalyst. J. Am. Chem. Soc. 136, 254–264 (2014).

    Article  CAS  Google Scholar 

  7. Banerjee, S., Bhoyare, V. W. & Patil, N. T. Gold and hypervalent iodine(iii) reagents: liaisons over a decade for electrophilic functional group transfer reactions. Chem. Commun. 56, 2677–2690 (2020).

    Article  CAS  Google Scholar 

  8. Rocchigiani, L. & Bochmann, M. Recent advances in gold(iii) chemistry: structure, bonding, reactivity, and role in homogeneous catalysis. Chem. Rev. 121, 8364–8451 (2021).

    Article  CAS  Google Scholar 

  9. Liu, K., Li, N., Ning, Y., Zhu, C. & Xie, J. Gold-catalyzed oxidative biaryl cross-coupling of organometallics. Chem. 5, 2718–2730 (2019).

    Article  CAS  Google Scholar 

  10. Li, W. et al. Cooperative Au/Ag dual-catalyzed cross-dehydrogenative biaryl coupling: reaction development and mechanistic insight. J. Am. Chem. Soc. 141, 3187–3197 (2019).

    Article  CAS  Google Scholar 

  11. Ye, X. et al. Gold-catalyzed oxidative coupling of alkynes toward the synthesis of cyclic conjugated diynes. Chem. 4, 1983–1993 (2018).

    Article  CAS  Google Scholar 

  12. Peng, H. et al. Gold-catalyzed oxidative cross-coupling of terminal alkynes: selective synthesis of unsymmetrical 1,3-diynes. J. Am. Chem. Soc. 136, 13174–13177 (2014).

    Article  CAS  Google Scholar 

  13. Wang, W. et al. Dinuclear gold catalysis. Chem. Soc. Rev. 50, 1874–1912 (2021).

    Article  CAS  Google Scholar 

  14. Zhang, L. et al. Reductive C–C coupling by desulfurizing gold-catalyzed photoreactions. ACS Catal. 9, 6118–6123 (2019).

    Article  CAS  Google Scholar 

  15. Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    Article  CAS  Google Scholar 

  16. Akram, M. O., Banerjee, S., Saswade, S. S., Bedi, V. & Patil, N. T. Oxidant-free oxidative gold catalysis: the new paradigm in cross-coupling reactions. Chem. Commun. 54, 11069–11083 (2018).

    Article  CAS  Google Scholar 

  17. Huang, L., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Photosensitizer-free visible light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angew. Chem. Int. Ed. 55, 4808–4813 (2016).

    Article  CAS  Google Scholar 

  18. Huang, L., Rominger, F., Rudolph, M. & Hashmi, A. S. K. A general access to organogold(iii) complexes by oxidative addition of diazonium salts. Chem. Commun. 52, 6435–6438 (2016).

    Article  CAS  Google Scholar 

  19. Witzel, S., Sekine, K., Rudolph, M. & Hashmi, A. S. K. New transmetalation reagents for the gold-catalyzed visible light-enabled C(sp or sp2)–C(sp2) cross-coupling with aryldiazonium salts in the absence of a photosensitizer. Chem. Commun. 54, 13802–13804 (2018).

    Article  CAS  Google Scholar 

  20. Taschinski, S. et al. Light-induced mechanistic divergence in gold(i) catalysis: revisiting the reactivity of diazonium salts. Angew. Chem. Int. Ed. 58, 16988–16993 (2019).

    Article  CAS  Google Scholar 

  21. Eppel, D., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Mercury-free synthesis of pincer [C^N^C] AuIII complexes by an oxidative addition/C–H activation cascade. ChemSusChem 13, 1986–1990 (2020).

    Article  CAS  Google Scholar 

  22. Zhang, L., Si, X., Rominger, F. & Hashmi, A. S. K. Visible-light-induced radical carbocyclization/gem-diborylation through triplet energy transfer between a gold catalyst and aryl iodides. J. Am. Chem. Soc. 142, 10485–10493 (2020).

    Article  CAS  Google Scholar 

  23. Si, X. et al. Visible light induced α-C(sp3)–H acetalization of saturated heterocycles catalyzed by a dimeric gold complex. Org. Lett. 22, 5844–5849 (2020).

    Article  CAS  Google Scholar 

  24. Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013).

    Article  CAS  Google Scholar 

  25. Liu, K. et al. Dinuclear gold-catalyzed C–H bond functionalization of cyclopropenes. Sci. China Chem. 64, 1958–1963 (2021).

    Article  CAS  Google Scholar 

  26. He, Y., Wu, H. & Toste, F. D. A dual catalytic strategy for carbon–phosphorus cross-coupling via gold and photoredox catalysis. Chem. Sci. 6, 1194–1198 (2015).

    Article  CAS  Google Scholar 

  27. Zhang, S., Wang, C., Ye, X. & Shi, X. Intermolecular alkene difunctionalization via gold-catalyzed oxyarylation. Angew. Chem. Int. Ed. 59, 20470–20474 (2020).

    Article  CAS  Google Scholar 

  28. Rodriguez, J. et al. Au(i)/Au(iii) catalytic allylation involving π-allyl Au(iii) complexes. ACS Catal. 12, 993–1003 (2022).

    Article  CAS  Google Scholar 

  29. Chintawar, C. C., Bhoyare, V. W., Mane, M. V. & Patil, N. T. Enantioselective Au(i)/Au(iii) redox catalysis enabled by chiral (P, N)-ligands. J. Am. Chem. Soc. 144, 7089–7095 (2022).

    Article  CAS  Google Scholar 

  30. Yuan, T. et al. Alkyne trifunctionalization via divergent gold catalysis: combining π-acid activation, vinyl-gold addition, and redox catalysis. J. Am. Chem. Soc. 143, 4074–4082 (2021).

    Article  CAS  Google Scholar 

  31. Li, J. et al. switchable divergent synthesis in gold-catalyzed difunctionalizations of o-alkynylbenzenesulfonamides with aryldiazonium salts. Org. Lett. 23, 7713–7717 (2021).

    Article  CAS  Google Scholar 

  32. Peng, H., Cai, R., Xu, C., Chen, H. & Shi, X. Nucleophile promoted gold redox catalysis with diazonium salts: C–Br, C–S and C–P bond formation through catalytic sandmeyer coupling. Chem. Sci. 7, 6190–6196 (2016).

    Article  CAS  Google Scholar 

  33. Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article  CAS  Google Scholar 

  34. Chinchilla, R. & Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 40, 5084–5121 (2011).

    Article  CAS  Google Scholar 

  35. Sonogashira, K., Tohda, Y. & Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975).

    Article  Google Scholar 

  36. Bhoyare, V. W., Tathe, A. G., Das, A., Chintawar, C. C. & Patil, N. T. The interplay of carbophilic activation and Au(i)/Au(iii) catalysis: an emerging technique for 1,2-difunctionalization of C–C multiple bonds. Chem. Soc. Rev. 50, 10422–10450 (2021).

    Article  CAS  Google Scholar 

  37. De Haro, T. & Nevado, C. Gold-catalyzed ethynylation of arenes. J. Am. Chem. Soc. 132, 1512–1513 (2010).

    Article  Google Scholar 

  38. Banerjee, S., Ambegave, S. B., Mule, R. D., Senthilkumar, B. & Patil, N. T. Gold-catalyzed alkynylative Meyer–Schuster rearrangement. Org. Lett. 22, 4792–4796 (2020).

    Article  CAS  Google Scholar 

  39. Brand, J. P. & Waser, J. Para-selective gold-catalyzed direct alkynylation of anilines. Org. Lett. 14, 744–747 (2012).

    Article  CAS  Google Scholar 

  40. Brand, J. P., Charpentier, J. & Waser, J. Direct alkynylation of indole and pyrrole heterocycles. Angew. Chem. Int. Ed. 48, 9346–9349 (2009).

    Article  CAS  Google Scholar 

  41. Szekely, A., Peter, A., Aradi, K., Tolnai, G. L. & Novak, Z. Gold-catalyzed direct alkynylation of azulenes. Org. Lett. 19, 954–957 (2017).

    Article  CAS  Google Scholar 

  42. Hofer, M., De Haro, T., Gomez-Bengoa, E., Genoux, A. & Nevado, C. Oxidant speciation and anionic ligand effects in the gold-catalyzed oxidative coupling of arenes and alkynes. Chem. Sci. 10, 8411–8420 (2019).

    Article  CAS  Google Scholar 

  43. Kim, S., Rojas-Martin, J. & Toste, F. D. Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) cross-coupling. Chem. Sci. 7, 85–88 (2016).

    Article  CAS  Google Scholar 

  44. Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2016).

    Article  CAS  Google Scholar 

  45. Cai, R. et al. Ligand-assisted gold-catalyzed cross-coupling with aryldiazonium salts: redox gold catalysis without an external oxidant. Angew. Chem. Int. Ed. 54, 8772–8776 (2015).

    Article  CAS  Google Scholar 

  46. Wu, Y. et al. Electrochemical palladium-catalyzed oxidative Sonogashira carbonylation of arylhydrazines and alkynes to ynones. J. Am. Chem. Soc. 143, 12460–12466 (2021).

    Article  CAS  Google Scholar 

  47. Jiao, K. J., Xing, Y. K., Yang, Q. L., Qiu, H. & Mei, T. S. Site-selective C–H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).

    Article  CAS  Google Scholar 

  48. Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1–H/R2–H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article  CAS  Google Scholar 

  49. Malapit, C. A. et al. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 122, 3180–3218 (2022).

    Article  CAS  Google Scholar 

  50. Ackermann, L. Metalla-electrocatalyzed C–H activation by earth-abundant 3d metals and beyond. Acc. Chem. Res. 53, 84–104 (2020).

    Article  CAS  Google Scholar 

  51. Huang, B., Sun, Z. & Sun, G. Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities. eScience 2, 243–277 (2022).

    Article  Google Scholar 

  52. Cheng, X. et al. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem. 4, 1120–1152 (2022).

    Article  CAS  Google Scholar 

  53. Ma, C. et al. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci. Bull. 66, 2412–2429 (2021).

    Article  CAS  Google Scholar 

  54. Ye, X. et al. Facilitating gold redox catalysis with electrochemistry: an efficient chemical-oxidant-free approach. Angew. Chem. Int. Ed. 58, 17226–17230 (2019).

    Article  CAS  Google Scholar 

  55. Zhang, S., Ye, X., Wojtas, L., Hao, W. & Shi, X. Electrochemical gold redox catalysis for selective oxidative arylation. Green Synth. Catal. 2, 82–86 (2021).

    Article  Google Scholar 

  56. Xie, J. et al. Light-induced gold-catalyzed Hiyama arylation: a coupling access to biarylboronates. Angew. Chem. Int. Ed. 57, 16648–16653 (2018).

    Article  CAS  Google Scholar 

  57. Witzel, S., Hashmi, A. S. K. & Xie, J. Light in gold catalysis. Chem. Rev. 121, 8868–8925 (2021).

    Article  CAS  Google Scholar 

  58. Xia, S. & Xie, J. Energy transfer in gold photocatalysis. Gold Bull. 55, 123–127 (2022).

    Article  CAS  Google Scholar 

  59. Lin, B. et al. Gold‐catalyzed desymmetric lactonization of alkynylmalonic acids enabled by chiral bifunctional P,N ligands. Angew. Chem. Int. Ed. 61, e202201739 (2022).

    CAS  Google Scholar 

  60. Yang, W. L., Shang, X. Y., Luo, X. & Deng, W. P. Enantioselective synthesis of spiroketals and spiroaminals via gold and iridium sequential catalysis. Angew. Chem. Int. Ed. 61, e202203661 (2022).

    CAS  Google Scholar 

  61. Lin, X. et al. Biomimetic approach to the catalytic enantioselective synthesis of tetracyclic isochroman. Nat. Commun. 12, 4958 (2021).

    Article  CAS  Google Scholar 

  62. Zhang, M., Xie, J. & Zhu, C. A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes. Nat. Commun. 9, 3517 (2018).

    Article  Google Scholar 

  63. Huang, H., Zhang, G., Gong, L., Zhang, S. & Chen, Y. Visible-light-induced chemoselective deboronative alkynylation under biomolecule-compatible conditions. J. Am. Chem. Soc. 136, 2280–2283 (2014).

    Article  CAS  Google Scholar 

  64. Anhauser, L., Teders, M., Rentmeister, A. & Glorius, F. Bio-additive-based screening: toward evaluation of the biocompatibility of chemical reactions. Nat. Protoc. 14, 2599–2626 (2019).

    Article  Google Scholar 

  65. Hashmi, A. S. K. et al. Simple gold-catalyzed synthesis of benzofulvenes—gem-diaurated species as ‘instant dual-activation’ precatalysts. Angew. Chem. Int. Ed. 51, 4456–4460 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (22122103 and 21971108 to J.X.), National Key Research and Development Program of China (2021YFC2101901 and 2022YFA15032 to J.X.), Fundamental Research Funds for the Central Universities (020514380252, 020514380272 to J.X.) and China Postdoctoral Science Foundation (2020TQ0139 and 2021M701661 to C.-G.Z.) for financial support. We acknowledge Xu Cheng at Nanjing University for insightful discussion and assistance. All theoretical calculations were performed at the High-Performance Computing Center of Nanjing University. We also acknowledge Yaohang Cheng, Yantao Li and Nian Li at Nanjing University for reproduction of the experimental procedures for products 4, 33 and 39.

Author information

Authors and Affiliations

Authors

Contributions

J.X. and H.L. conceived of and designed the project. H.L., Y.J. and C.-G.Z. performed and analysed the experimental data. J.X. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Jin Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Huan-Ming Huang, Xiaodong Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Julaiti, Y., Zhao, CG. et al. Electrochemical gold-catalysed biocompatible C(sp2)–C(sp) coupling. Nat. Synth 2, 338–347 (2023). https://doi.org/10.1038/s44160-022-00219-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00219-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing