Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nickel-electrocatalysed C(sp3)–C(sp3) cross-coupling of unactivated alkyl halides

Abstract

The C(sp3)–C(sp3) linkages are undoubtedly important in natural products, pharmaceuticals and organic compounds. Electrochemical cross-electrophile coupling with a broad range of available alkyl halides is an attractive and useful strategy for the construction of C(sp3)–C(sp3) bonds, although success could only be seen on activated alkyl halides in previous reports, due to the great challenge of reactivity and selectivity control of unactivated alkyl halides. Here we report a general strategy for electrochemical cross-electrophile coupling of unactivated alkyl halides under nickel catalysis. The highly selective electrochemical cross-electrophile coupling process was carried out in an operationally simple manner with high selectivity, setting the stage for the challenging C(sp3)–C(sp3) bonds construction with versatile unactivated alkyl halides, including the cross-coupling of primary–primary halides, primary–secondary halides, primary–tertiary halides and secondary–secondary halides with high selectivity and excellent functional group compatibility. The diverse products, as well as the various late-stage modifications of bio-relevant compounds, demonstrated its potential use in organic synthesis and pharmaceutical chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-coupling for the construction of C(sp3)–C(sp3) bonds.
Fig. 2: Substrate scope for the nickel-catalysed eXEC system.
Fig. 3: Application for the nickel-catalysed eXEC system.
Fig. 4: Mechanistic studies.
Fig. 5: Radical-trapping experiments and proposed mechanism.

Similar content being viewed by others

Data availability

The data that support the findings in this work are available within the paper and Supplementary Information or from the authors upon reasonable request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2285024. These data can be obtained free of charge via www.ccdc.cam.ac.uk/structures/.

Code availability

The Python code used for kinetic simulations is made available in Supplementary Information, or in the GitHub repository (https://github.com/TMSCN/Computational_Chemistry_Utils/tree/main/Kinetic_Simulation), or is available from the corresponding author upon reasonable request.

References

  1. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lovering, F. Escape from Flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  3. Geist, E., Kirschning, A. & Schmidt, T. sp3sp3 coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Johnston, C., Smith, R., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi, J. & Fu, G. C. Transition metal–catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Terao, J., Watanabe, H., Ikumi, A., Kuniyasu, H. & Kambe, N. Nickel-catalyzed cross-coupling reaction of Grignard reagents with alkyl halides and tosylates: remarkable effect of 1,3-butadienes. J. Am. Chem. Soc. 124, 4222–4223 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Vechorkin, O. & Hu, X. Nickel-catalyzed cross-coupling of non-activated and functionalized alkyl halides with alkyl Grignard reagents. Angew. Chem. Int. Ed. 48, 2937–2940 (2009).

    Article  CAS  Google Scholar 

  8. Guérinot, A. & Cossy, J. Cobalt-catalyzed cross-couplings between alkyl halides and Grignard reagents. Acc. Chem. Res. 53, 1351–1363 (2020).

    Article  PubMed  Google Scholar 

  9. Giovannini, R., Stüdemann, T., Dussin, G. & Knochel, P. An efficient nickel-catalyzed cross-coupling between sp3 carbon centers. Angew. Chem. Int. Ed. 37, 2387–2390 (1998).

    Article  CAS  Google Scholar 

  10. Zhou, J. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Haas, D., Hammann, J. M., Greiner, R. & Knochel, P. Recent developments in Negishi cross-coupling reactions. ACS Catal. 6, 1540–1552 (2016).

    Article  CAS  Google Scholar 

  12. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saito, B. & Fu, G. C. Alkyl–alkyl Suzuki cross-couplings of unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 129, 9602–9603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Z., Górski, B. & Leonori, D. Merging halogen-atom transfer (XAT) and copper catalysis for the modular Suzuki–Miyaura-type cross-coupling of alkyl iodides and organoborons. J. Am. Chem. Soc. 144, 1986–199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luh, T.-Y., Leung, M.-K. & Wong, K.-T. Transition metal-catalyzed activation of aliphatic C–X bonds in carbon–carbon bond formation. Chem. Rev. 100, 3187–3204 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Cárdenas, D. J. Advances in functional-group-tolerant metal-catalyzed alkyl–alkyl cross-coupling reactions. Angew. Chem. Int. Ed. 42, 384–387 (2003).

    Article  Google Scholar 

  17. Kranthikumar, R. Recent advances in C(sp3)–C(sp3) cross-coupling chemistry: a dominant performance of nickel catalysts. Organometallics 41, 667–679 (2022).

    Article  CAS  Google Scholar 

  18. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, X., Dai, Y. & Gong, H. Nickel-catalyzed reductive couplings. Top. Curr. Chem. 374, 43 (2016).

    Article  Google Scholar 

  21. Zhang, P., Le, C. C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lucas, E. L. & Jarvo, E. R. Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles. Nat. Rev. Chem. 1, 0065 (2017).

    Article  Google Scholar 

  23. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakai, H. A., Liu, W., Le, C. C. & MacMillan, D. W. C. Cross-electrophile coupling of unactivated alkyl chlorides. J. Am. Chem. Soc. 142, 11691–11697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, W., Lavagnino, M. N., Gould, C. A., Alcázar, J. & MacMillan, D. W. C. A biomimetic SH2 cross-coupling mechanism for quaternary sp3–carbon formation. Science 374, 1258–1263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling. Science 376, 410–416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Z.-Z. et al. Nickel-catalyzed reductive C(sp2)–Si coupling of chlorohydrosilanes via Si–Cl cleavage. Angew. Chem. Int. Ed. 61, e202200215 (2022).

    Article  CAS  Google Scholar 

  28. Zhao, W.-T., Meng, H., Lin, J.-N. & Shu, W. Ligand-controlled nickel-catalyzed regiodivergent cross-electrophile alkyl–alkyl couplings of alkyl halides. Angew. Chem. Int. Ed. 62, e2022157 (2023).

    Google Scholar 

  29. Yu, X., Yang, T., Wang, S., Xu, H. & Gong, H. Nickel-catalyzed reductive cross-coupling of unactivated alkyl halides. Org. Lett. 13, 2138–2141 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, H., Zhao, C., Qian, Q., Deng, W. & Gong, H. Nickel-catalyzed cross-coupling of unactivated alkyl halides using bis(pinacolato)diboron as reductant. Chem. Sci. 4, 4022–4029 (2013).

    Article  CAS  Google Scholar 

  31. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sauermann, N., Meyer, T. H., Qiu, Y. & Ackermann, L. Electrocatalytic C–H activation. ACS Catal. 8, 7086–7103 (2018).

    Article  CAS  Google Scholar 

  35. Yuan, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 52, 3309–3324 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Röckl, J. L., Pollok, D., Franke, R. & Waldvogel, S. R. A decade of electrochemical dehydrogenative C, C-coupling of aryls. Acc. Chem. Res. 53, 45–61 (2020).

    Article  PubMed  Google Scholar 

  38. Jiao, K.-J., Xing, Y.-K., Yang, Q.-L., Qiu, H. & Mei, T.-S. Site-selective C–H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen, T. & Lambert, T. H. Electrophotocatalytic diamination of vicinal C–H bonds. Science 371, 620–626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang, Y. et al. Electrochemically induced nickel catalysis for oxygenation reactions with water. Nat. Catal. 4, 116–123 (2021).

    Article  CAS  Google Scholar 

  42. Sun, G.-Q. et al. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 615, 67–72 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen, T. et al. Electrophotocatalytic oxygenation of multiple adjacent C–H bonds. Nature 614, 275–280 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Bäckvall, J.-E. & Gogoll, A. Palladium-hydroquinone catalysed electrochemical 1,4-oxidation of conjugated dienes. J. Chem. Soc. Chem. Commun. 16, 1236–1238 (1987).

    Article  Google Scholar 

  45. DeLano, T. J. & Reisman, S. E. Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis. ACS Catal. 9, 6751–6754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Truesdell, B. L., Hamby, T. B. & Sevov, C. S. General C(sp2)–C(sp3) cross-electrophile coupling reactions enabled by overcharge protection of homogeneous electrocatalysts. J. Am. Chem. Soc. 142, 5884–5893 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Li, L. et al. Catalytic asymmetric electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    Article  CAS  Google Scholar 

  48. Li, Z. et al. Electrochemically enabled, nickel-catalyzed dehydroxylative cross-coupling of alcohols with aryl halides. J. Am. Chem. Soc. 143, 3536–3543 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Dong, X., Roeckl, J. L., Waldvogel, S. R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Gao, Y. et al. Ni-catalyzed enantioselective dialkyl carbinol synthesis via decarboxylative cross-coupling: development, scope, and applications. J. Am. Chem. Soc. 144, 10992–11002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, P. et al. Facile and general electrochemical deuteration of unactivated alkyl halides. Nat. Commun. 13, 3774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, Y. et al. Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amounts of an organomediator. Angew. Chem. Int. Ed. 61, e202210201 (2022).

    Article  CAS  Google Scholar 

  53. Zhao, L.-L. et al. Electrochemical ring-opening dicarboxylation of strained carbon–carbon single bonds with CO2: facile synthesis of diacids and derivatization into polyesters. J. Am. Chem. Soc. 144, 2062–2068 (2022).

    Article  Google Scholar 

  54. Cai, C. Y. et al. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds. Nat. Catal. 5, 943–951 (2022).

    Article  CAS  Google Scholar 

  55. Franke, M. C. et al. Zinc-free, scalable reductive cross-electrophile coupling driven by electrochemistry in an undivided cell. ACS Catal. 12, 12617–12626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, K. et al. Direct and selective electrocarboxylation of styrene oxides with CO2 for accessing β-hydroxy acids. Angew. Chem. Int. Ed. 61, e202207660 (2022).

    Article  CAS  Google Scholar 

  57. Huang, C. et al. Epoxide electroreduction. J. Am. Chem. Soc. 144, 1389–1395 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Cai, C.-Y., Zheng, Y.-T., Li, J.-F. & Xu, H.-C. Cu-electrocatalytic diazidation of alkenes at ppm catalyst loading. J. Am. Chem. Soc. 144, 11980–11985 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Harwood, S. J. et al. Modular terpene synthesis enabled by mild electrochemical couplings. Science 375, 745–752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nédélec, J. Y., Ait-Haddou-Mouloud, H., Folest, J. C. & Perichon, J. Electrochemical cross-coupling of alkyl halides in the presence of a sacrificial anode. J. Org. Chem. 53, 4720–4724 (1988).

    Article  Google Scholar 

  62. Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song, S., Zhou, J., Fu, C. & Ma, S. Catalytic enantioselective construction of axial chirality in 1,3-disubstituted allenes. Nat. Commun. 10, 507 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sheng, J. et al. Diversity-oriented synthesis of aliphatic fluorides via reductive C(sp3)–C(sp3) cross-coupling fluoroalkylation. Angew. Chem. Int. Ed. 60, 15020–15027 (2021).

    Article  CAS  Google Scholar 

  65. Anderson, T. J. & Vicic, D. A. Direct observation of noninnocent reactivity of ZnBr2 with alkyl halide complexes of nickel. Organometallics 23, 623–625 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Key R&D Program of China (2022YFA1503200 to Y.A.Q.), National Natural Science Foundation of China (grant no. 22371149, 22188101 to Y.A.Q.), the Fundamental Research Funds for the Central Universities (no. 63223015 to Y.A.Q.) and Frontiers Science Center for New Organic Matter, Nankai University (grant no. 63181206 to Y.A.Q.). State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, and College of Chemistry in Nankai University are gratefully acknowledged. We are sincerely grateful to Q.-L. Zhou for his generous and key support. We thank group members for checking the data and repeating the results of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q. supervised the project, and provided guidance on the project. Y.Q. and P.L. conceived and designed the study. P.L., C.G., G.K. and P.X. performed the experiments. P.L., S.W. and Y.W. performed mechanistic studies. Z.Z. conducted the DFT calculations. P.L., Y.Q., D.M. and T.F. wrote and revised the paper. All authors contributed to the analysis and interpretation of the data.

Corresponding author

Correspondence to Youai Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chen Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Methods, References and Tables 1–15.

Supplementary Data 1

Cartesian coordinate.

Supplementary Data 2

Code of kinetic simulation.

Supplementary Data 3

Crystallographic data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhu, Z., Guo, C. et al. Nickel-electrocatalysed C(sp3)–C(sp3) cross-coupling of unactivated alkyl halides. Nat Catal 7, 412–421 (2024). https://doi.org/10.1038/s41929-024-01118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01118-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing