Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combinatorial cation exchange for the discovery and rational synthesis of heterostructured nanorods

Abstract

Precisely engineering heterostructured nanoparticles that incorporate different materials in specific configurations requires appropriate design guidelines and synthetic tools. Cation exchange reactions offer a capable pathway for rationally transforming simple nanoparticles into a large library of complex heterostructured products, but existing capabilities remain limited, leaving many compositions and architectures out of reach. Here, we establish a combinatorial solution chemistry platform to accelerate the discovery and rational synthesis of heterostructured nanoparticles. By introducing copper sulfide nanorods into mixtures of cations (Cd2+, Zn2+, Co2+, Ni2+, In3+, Ga3+) under purposely unoptimized conditions, many heterostructured metal sulfide products form simultaneously, maximizing product diversity. By modulating simple reaction variables, such as temperature, concentration, stoichiometry, choice of cations and morphology, we observe hundreds of products that are incompatible with existing design guidelines. We then translate these observations into scalable reactions to rationally produce high-yield samples with previously inaccessible features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combinatorial platform and characterization of the lead system.
Fig. 2: Combinatorial reaction at different temperatures.
Fig. 3: Combinatorial reaction with different concentrations, ratios, cations and particle shapes.
Fig. 4: Application of combinatorial insights to scalable synthesis.

Similar content being viewed by others

Data availability

All source data and information needed to evaluate the conclusions in the paper are presented in the paper or in the Supplementary Information. Data are available from the corresponding author upon reasonable request.

Code availability

The Python script used to count and sort particles for some of the bar charts can be found at: https://github.com/RKatzChemComp/Particle-Sepration-and-Counting. A demonstration is provided at: https://github.com/RKatzChemComp/Particle-Sepration-and-Counting/tree/Demo. More information about this code can be found in the Particle Counting section in the Supplementary Information.

References

  1. Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chandrasekaran, S. et al. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 48, 4178–4280 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Oh, N. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Flanagan, J. C., Keating, L. P., Kalasad, M. N. & Shim, M. Extending the spectral range of double-heterojunction nanorods by cation exchange-induced alloying. Chem. Mater. 31, 9307–9316 (2019).

    Article  CAS  Google Scholar 

  5. Min, Y. et al. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9, 6843–6853 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Ibáñez, M. et al. Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks. ACS Nano 13, 6572–6580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mandal, P., Patil, G., Kakoty, H. & Ghosh, A. Magnetic active matter based on helical propulsion. Acc. Chem. Res. 51, 2689–2698 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Ebbens, S. J. & Gregory, D. A. Catalytic Janus colloids: controlling trajectories of chemical microswimmers. Acc. Chem. Res. 51, 1931–1939 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J., Mayorga-Martinez, C. C., Ohl, C. D. & Pumera, M. Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 32, 2102265 (2022).

    Article  CAS  Google Scholar 

  10. Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Reddington, E. et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735–1737 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Cui, M. et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11, 2002887 (2021).

    Article  CAS  Google Scholar 

  15. Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. PNAS 117, 6316–6322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, H., Hyun, B. R., Wise, F. W. & Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 12, 5856–5860 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Williamson, C. B., Nevers, D. R., Hanrath, T. & Robinson, R. D. Prodigious effects of concentration intensification on nanoparticle synthesis: a high-quality, scalable approach. J. Am. Chem. Soc. 137, 15843–15851 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Yuan, B., Egner, T. K., Venditti, V. & Cademartiri, L. Sustainable scalable synthesis of sulfide nanocrystals at low cost with an ionic liquid sulfur precursor. Nat. Commun. 9, 4078 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morris, A. L. et al. Toward improved scalability of cation exchange reactions of metal chalcogenide nanocrystals. Chem. Mater. 29, 6596–6600 (2017).

    Article  CAS  Google Scholar 

  20. De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beberwyck, B. J., Surendranath, Y. & Alivisatos, A. P. Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770 (2013).

    Article  CAS  Google Scholar 

  22. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Structure-selective synthesis of wurtzite and zincblende ZnS, CdS, and CuInS2 using nanoparticle cation exchange reactions. Inorg. Chem. 58, 672–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Powell, A. E., Hodges, J. M. & Schaak, R. E. Preserving both anion and cation sublattice features during a nanocrystal cation-exchange reaction: synthesis of metastable wurtzite-type CoS and MnS. J. Am. Chem. Soc. 138, 471–474 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Z., Saruyama, M., Asaka, T., Tatetsu, Y. & Teranishi, T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions. Science 373, 332–337 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Butterfield, A. G., McCormick, C. R., Veglak, J. M. & Schaak, R. E. Morphology-dependent phase selectivity of cobalt sulfide during nanoparticle cation exchange reactions. J. Am. Chem. Soc. 143, 7915–7919 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Steimle, B. C. et al. Experimental insights into partial cation exchange reactions for synthesizing heterostructured metal sulfide nanocrystals. Chem. Mater. 32, 5461–5482 (2020).

    Article  CAS  Google Scholar 

  28. Zhai, Y. & Shim, M. Effects of copper precursor reactivity on the shape and phase of copper sulfide nanocrystals. Chem. Mater. 29, 2390–2397 (2017).

    Article  CAS  Google Scholar 

  29. McCormick, C. R. & Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 143, 1017–1023 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, Y. et al. Phase-pure pentlandite Ni4.3Co4.7S8 binary sulfide as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution. Nanoscale 10, 10459–10466 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X. et al. AutoDetect-MNP: an unsupervised machine learning algorithm for automated analysis of transmission electron microscope images of metal nanoparticles. JACS Au 1, 316–327 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Electron microscopy and X-ray diffraction data were acquired at the Materials Characterization Laboratory of the Penn State Materials Research Institute. Funding for this work was provided by the US National Science Foundation under grants DMR-1904122 and DMR-2210442.

Author information

Authors and Affiliations

Authors

Contributions

C.R.M., B.C.S. and R.E.S. conceived the concept. C.R.M. and R.E.S. designed the experiments and wrote the paper. C.R.M. synthesized and characterized the nanoparticle samples. R.R.K. performed image analysis.

Corresponding author

Correspondence to Raymond E. Schaak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Bryce Sadtler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, including experimental procedures, Figs. 1–30 and Refs. 33–37.

Source data

Source Data Fig. 1

Raw data for histogram in Fig. 1.

Source Data Fig. 2

Raw data for histogram in Fig. 2.

Source Data Fig. 3

Raw data for histogram in Fig. 3.

Source Data Fig. 4

Raw data for histogram in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormick, C.R., Katzbaer, R.R., Steimle, B.C. et al. Combinatorial cation exchange for the discovery and rational synthesis of heterostructured nanorods. Nat. Synth 2, 152–161 (2023). https://doi.org/10.1038/s44160-022-00203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00203-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing