Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue mosaicism following stem cell aging: blood as an exemplar

Abstract

Loss of stem cell regenerative potential underlies aging of all tissues. Somatic mosaicism, the emergence of cellular patchworks within tissues, increases with age and has been observed in every organ yet examined. In the hematopoietic system, as in most tissues, stem cell aging through a variety of mechanisms occurs in lockstep with the emergence of somatic mosaicism. Here, we draw on insights from aging hematopoiesis to illustrate fundamental principles of stem cell aging and somatic mosaicism. We describe the generalizable changes intrinsic to aged stem cells and their milieu that provide the backdrop for somatic mosaicism to emerge. We discuss genetic and nongenetic mechanisms that can result in tissue somatic mosaicism and existing methodologies to detect such clonal outgrowths. Finally, we propose potential avenues to modify mosaicism during aging, with the ultimate aim of increasing tissue resiliency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stem cell aging occurs in lockstep with blood somatic mosaicism.
Fig. 2: Drivers of somatic mosaicism in healthy and diseased tissue.
Fig. 3: Methodologies for detection of somatic mosaicism.
Fig. 4: Somatic mosaicism during stem cell aging and potential strategies to restore clonal diversity.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  2. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. de Haan, G. & Van Zant, G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93, 3294–3301 (1999).

    Article  PubMed  Google Scholar 

  4. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    CAS  Google Scholar 

  5. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, 1750–1762 (2007).

    Article  CAS  Google Scholar 

  8. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brunet, A., Goodell, M. A. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).

    CAS  Google Scholar 

  11. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    CAS  Google Scholar 

  13. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Colla, S. et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell 27, 644–657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adelman, E. R. et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9, 1080–1101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Itokawa, N. et al. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat. Commun. 13, 2691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jang, Y.-Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yahata, T. et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2950 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, F., Chen, Z., Liu, J. & Hou, Y. The Akt–mTOR network at the interface of hematopoietic stem cell homeostasis. Exp. Hematol. 103, 15–23 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140–152 (2007).

    CAS  Google Scholar 

  28. Signer, R. A. J., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chua, B. A. & Signer, R. A. J. Hematopoietic stem cell regulation by the proteostasis network. Curr. Opin. Hematol. 27, 254–263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. van Galen, P. et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510, 268–272 (2014).

    Article  PubMed  Google Scholar 

  31. Hidalgo San Jose, L. et al. Modest declines in proteome quality impair hematopoietic stem cell self-renewal. Cell Rep. 30, 69–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong, S. et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591, 117–123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kabacik, S. et al. The relationship between epigenetic age and the hallmarks of aging in human cells. Nat. Aging 2, 484–493 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stölzel, F. et al. Dynamics of epigenetic age following hematopoietic stem cell transplantation. Haematologica 102, e321–e323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Søraas, A. et al. Epigenetic age is a cell-intrinsic property in transplanted human hematopoietic cells. Aging Cell 18, e12897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hernando-Herraez, I. et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361 (2019).

  42. Lewis, S. K. et al. DNA methylation analysis validates organoids as a viable model for studying human intestinal aging. Cell Mol. Gastroenterol. Hepatol. 9, 527–541 (2020).

  43. Hwang, A. B. & Brack, A. S. Muscle stem cells and aging. Curr. Top. Dev. Biol. 126, 299–322 (2018).

    Article  PubMed  Google Scholar 

  44. Navarro Negredo, P., Yeo, R. W. & Brunet, A. Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27, 202–223 (2020).

    CAS  Google Scholar 

  45. Ermolaeva, M., Neri, F., Ori, A. & Rudolph, K. L. Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol. 19, 594–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Jasper, H. Intestinal stem cell aging: origins and interventions. Annu. Rev. Physiol. 82, 203–226 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Choudhury, S. et al. Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat. Aging 2, 714–725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Ayachi, S., Buscarlet, M. & Busque, L. 60 Years of clonal hematopoiesis research: from X-chromosome inactivation studies to the identification of driver mutations. Exp. Hematol. 83, 2–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Loh, P. R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763–768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat. Med. 27, 1921–1927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155–1166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nachun, D. et al. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell 20, e13366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marusyk, A. & DeGregori, J. Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. Biochim. Biophys. Acta 1785, 1–11 (2008).

    CAS  PubMed  Google Scholar 

  66. Challen, G. A. & Goodell, M. A. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood 136, 1590–1598 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, S. et al. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat. Commun. 10, 5649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hsu, J. I. et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23, 700–713 (2018).

    CAS  Google Scholar 

  69. Ogawa, S. Clonal hematopoiesis in acquired aplastic anemia. Blood 128, 337–347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Z. et al. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 186, 1968–1984 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370, 82–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, D. et al. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 378, 983–989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akdemir, K. C. et al. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nat. Genet. 52, 1178–1188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. López-Otín, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article  PubMed  Google Scholar 

  80. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Zeventer, I. A. et al. Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population. Cancer Cell 41, 1017–1031 (2023).

    Article  PubMed  Google Scholar 

  83. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kennedy, S. R. et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat. Protoc. 9, 2586–2606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang, J. et al. The genomic landscapes of individual melanocytes from human skin. Nature 586, 600–605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Franco, I. et al. Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat. Commun. 9, 800 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to decipher clonal dynamics in disease. Science 378, eabm5874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klein, A. M. & Simons, B. D. Universal patterns of stem cell fate in cycling adult tissues. Development 138, 3103–3111 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Ganuza, M. et al. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133, 1927–1942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu, V. W. C. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167, 1310–1322 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Hui, T. et al. High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations. Stem Cell Reports 11, 578–592 (2018).

    CAS  Google Scholar 

  99. Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. López-Moyado, I. F. et al. Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. Proc. Natl Acad. Sci. USA 116, 16933–16942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hong, T. et al. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. Nat. Aging 3, 1387–1400 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Nam, A. S. et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54, 1514–1526 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fennell, K. A. et al. Identifying non-genetic determinants of malignant clonal fitness at single cell resolution. Nature 601, 125–131 (2021).

    Article  PubMed  Google Scholar 

  105. Ergen, A. V., Boles, N. C. & Goodell, M. A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119, 2500–2509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ma, S. et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 29, 990–1005 (2022).

    CAS  Google Scholar 

  107. Pálovics, R. et al. Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603, 309–314 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ho, T. T. et al. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J. Exp. Med. 218, e20210223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kuribayashi, W. et al. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J. Exp. Med. 218, e20192283 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Ho, Y.-H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418 (2019).

    CAS  Google Scholar 

  111. He, H. et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood 136, 183–198 (2020).

    Article  PubMed  Google Scholar 

  112. Frisch, B. J. et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight 5, e124213 (2019).

    Article  PubMed  Google Scholar 

  113. Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. SanMiguel, J. M. et al. Distinct tumor necrosis factor α receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 12, 2763–2773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cai, Z. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23, 833–849 (2018).

    CAS  Google Scholar 

  116. Abegunde, S. O., Buckstein, R., Wells, R. A. & Rauh, M. J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59, 60–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. King, K. Y., Huang, Y., Nakada, D. & Goodell, M. A. Environmental influences on clonal hematopoiesis. Exp. Hematol. 83, 66–73 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Florez, M. A. et al. Clonal hematopoiesis: mutation-specific adaptation to environmental change. Cell Stem Cell 29, 882–904 (2022).

    CAS  Google Scholar 

  119. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, C. R. C. et al. Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp. Hematol. 80, 36–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428–1442 (2021).

    CAS  Google Scholar 

  122. Zioni, N. et al. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat. Commun. 14, 2070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Leoni, C. et al. Dnmt3a restrains mast cell inflammatory responses. Proc. Natl Acad. Sci. USA 114, E1490–E1499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cobo, I. et al. DNA methyltransferase 3 α and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 55, 1386–1401 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598, 473–478 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Kahn, J. D. et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132, 1095–1105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, C.-W. et al. SRCAP mutations drive clonal hematopoiesis through epigenetic and DNA repair dysregulation. Cell Stem Cell 30, 1503–1519 (2023).

    Google Scholar 

  130. Weinstock, J. S. et al. Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis. Nature 616, 755–763 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Tothova, Z. et al. Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell 21, 547–555 (2017).

    CAS  Google Scholar 

  133. Chin, D. W. L. et al. Aged healthy mice acquire clonal hematopoiesis mutations. Blood 139, 629–634 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shin, T.-H. et al. A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility for testing interventions. Blood 140, 1774–1789 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ashcroft, P., Manz, M. G. & Bonhoeffer, S. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments. PLoS Comput. Biol. 13, e1005803 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nowakowska, M. K. et al. Association of clonal hematopoiesis mutations with clinical outcomes: a systematic review and meta-analysis. Am. J. Hematol. 97, 411–420 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Weeks, L. D. et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2, https://doi.org/10.1056/evidoa2200310 (2023).

  138. Lai-Cheong, J. E., McGrath, J. A. & Uitto, J. Revertant mosaicism in skin: natural gene therapy. Trends Mol. Med. 17, 140–148 (2011).

    Article  PubMed  Google Scholar 

  139. Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 29, 1662–1670 (2023)

  140. Loftfield, E. et al. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci. Rep. 8, 12316 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yu, B. et al. Supplemental association of clonal hematopoiesis with incident heart failure. J. Am. Coll. Cardiol. 78, 42–52 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bhattacharya, R. et al. Clonal hematopoiesis is associated with higher risk of stroke. Stroke 53, 788–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Zekavat, S. M. et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat. Cardiovasc. Res. 2, 144–158 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wolach, O. et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 10, eaan8292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mas-Peiro, S. et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 41, 933–939 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Miller, P. G. et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood 139, 357–368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Agrawal, M. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, P. G. et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J. Exp. Med. 218, e20211872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bonnefond, A. et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 45, 1040–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Dawoud, A. A. Z., Gilbert, R. D., Tapper, W. J. & Cross, N. C. P. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 36, 507–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Vlasschaert, C. et al. Association of clonal hematopoiesis of indeterminate potential with worse kidney function and anemia in two cohorts of patients with advanced chronic kidney disease. J. Am. Soc. Nephrol. 33, 985–995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vlasschaert, C. et al. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Preprint at medRxiv https://doi.org/10.1101/2023.05.16.23290051 (2023).

  155. Wong, W. J. et al. Clonal haematopoiesis and risk of chronic liver disease. Nature 616, 747–754 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hecker, J. S. et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood 138, 1727–1732 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Savola, P. et al. Clonal hematopoiesis in patients with rheumatoid arthritis. Blood Cancer J. 8, 69 (2018).

    Google Scholar 

  158. Arends, C. M. et al. Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 105, e264–e267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Honigberg, M. C. et al. Premature menopause, clonal hematopoiesis, and coronary artery disease in postmenopausal women. Circulation 143, 410–423 (2021).

    Article  PubMed  Google Scholar 

  160. Grassmann, F. et al. Y chromosome mosaicism is associated with age-related macular degeneration. Eur. J. Hum. Genet. 27, 36–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Dumanski, J. P. et al. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am. J. Hum. Genet. 98, 1208–1219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat. Med. 27, 1012–1024 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mustjoki, S. & Young, N. S. Somatic mutations in ‘benign’ disease. N. Engl. J. Med. 384, 2039–2052 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. van den Akker, P. C., Bolling, M. C. & Pasmooij, A. M. G. Revertant mosaicism in genodermatoses: natural gene therapy right before your eyes. Biomedicines 10, 2118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Mensa-Vilaró, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019).

    Article  PubMed  Google Scholar 

  170. Miyazawa, H. & Wada, T. Reversion mosaicism in primary immunodeficiency diseases. Front. Immunol. 12, 783022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gross, M. et al. Reverse mosaicism in Fanconi anemia: natural gene therapy via molecular self-correction. Cytogenet. Genome Genet. 98, 126–135 (2002).

    Article  CAS  Google Scholar 

  172. Hirschhorn, R. In vivo reversion to normal of inherited mutations in humans. J. Med. Genet. 40, 721–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jonkman, M. F. Revertant mosaicism in human genetic disorders. Am. J. Med. Genet. 85, 361–364 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Goodell laboratory for their constructive discussions. C.D.K. was supported by a National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases fellowship training grant (1F30DK131638-01A1). The Goodell laboratory is supported by grants from the National Institutes of Health, including AG036695, CA183252, CA237291, DK092883 and CA265748 and the Milky Way Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.D.K. and M.A.G. wrote the manuscript and prepared the figures.

Corresponding author

Correspondence to Margaret A. Goodell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Aging thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapadia, C.D., Goodell, M.A. Tissue mosaicism following stem cell aging: blood as an exemplar. Nat Aging 4, 295–308 (2024). https://doi.org/10.1038/s43587-024-00589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-024-00589-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing