Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Do haematopoietic stem cells age?

Abstract

Genetic defects that accumulate in haematopoietic stem cells (HSCs) are thought to be responsible for age-related changes in haematopoiesis that include a decline in lymphopoiesis and skewing towards the myeloid lineage. This HSC-centric view is based largely on studies showing that HSCs from aged mice exhibit these lineage biases following transplantation into irradiated young recipient mice. In this Opinion article, we make the case that the reliance on this approach has led to inaccurate conclusions regarding the effects of ageing on blood-forming stem cells; we suggest instead that changes in the environment contribute to haematopoietic system ageing. We propose that a complete understanding of how ageing affects haematopoiesis depends on the analysis of blood cell production in unperturbed mice. We describe how this can be achieved using in situ fate mapping. This approach indicates that changes in downstream progenitors, in addition to any HSC defects, may explain the reduced lymphopoiesis and sustained myelopoiesis that occur during ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recipient conditioning and the composition of the haematopoietic stem cell compartment affect reconstitution.
Fig. 2: Haematopoietic stem cell and progenitor output in situ can be measured by fate mapping.

Similar content being viewed by others

References

  1. Geiger, H., de Haan, G. & Florian, M. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    CAS  PubMed  Google Scholar 

  2. Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences and reversal of immune system aging. J. Clin. Invest. 123, 958–965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pang, W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  Google Scholar 

  4. Riley, R., Blomberg, B. & Frasca, D. B cells, E2A, and aging. Immunol. Rev. 205, 30–47 (2005).

    CAS  PubMed  Google Scholar 

  5. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Effects of aging on early B- and T-cell development. Immunol. Rev. 205, 7–17 (2005).

    CAS  PubMed  Google Scholar 

  6. Miller, J. P. & Allman, D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 171, 2326–2330 (2003).

    CAS  PubMed  Google Scholar 

  7. Johnson, K. M., Owen, K. & Witte, P. L. Aging and developmental transitions in the B cell lineage. Int. Immunol. 14, 1313–1323 (2002).

    CAS  PubMed  Google Scholar 

  8. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J. Immunol. 176, 1007–1012 (2006).

    CAS  PubMed  Google Scholar 

  9. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & De Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. De Haan, G. & Lazare, S. Aging of hematopoietic stem cells. Blood 131, 479–487 (2018).

    PubMed  Google Scholar 

  11. Wahlestedt, M., Pronk, C. & Bryder, D. Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med. 4, 186–194 (2015).

    CAS  PubMed  Google Scholar 

  12. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  Google Scholar 

  13. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Florian, M. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mann, M. et al. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 25, 2992–3005 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho, Y. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiologic aging. Cell Stem Cell 25, 1–12 (2019).

    Google Scholar 

  18. Pioli, P., Casero, D., Montecino-Rodriguez, E., Morrison, S. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366 (2019).

    CAS  PubMed  Google Scholar 

  19. Busch, K. & Rodewald, H.-R. Unperturbed vs. post-transplantation hematopoeisis: both in vivo but different. Curr. Opin. Hematol. 23, 295–303 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, R., Czechowica, A., Seita, J., Jiang, D. & Weissman, I. Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo. Proc. Natl Acad. Sci. USA 116, 1447–1456 (2019).

    CAS  PubMed  Google Scholar 

  21. Wilkinson, F. et al. Busulfan conditioning enhances engraftment of hematopoietic donor-derived cells in the brain compared with irradiation. Mol. Ther. 21, 868–876 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xun, C., Thompson, J., Jennings, C., Brown, S. & Widmer, M. Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83, 2360–2367 (1994).

    CAS  PubMed  Google Scholar 

  23. Henry, C. et al. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J. Clin. Invest. 125, 4666–4680 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Youshani, A. et al. Non-myeloablative busulfan chimeric mouse models are less pro-inflammatory than head-shielded irradiation for studying immune cell interactions in brain tumors. J. Neuroinflammation 16, 25 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. King, K. & Goodell, M. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat. Rev. Immunol. 11, 685–692 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagai, Y. et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801–812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mirantes, C., Passegue, E. & Pietras, E. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp. Cell Res. 329, 248–254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kovtonyuk, L., Fritsch, K., Feng, X., Manz, M. & Takizawa, H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 7, 502 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Baldridge, M., King, K. & Goodel, M. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 32, 57–65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pietras, E. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 130, 1693–1698 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ueda, Y., Kondo, M. & Kelsoe, G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J. Exp. Med. 201, 1771–1780 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pietras, E. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dorshkind, K. Interleukin-1 inhibition of B lymphopoiesis is reversible. Blood 72, 2053–2055 (1988).

    CAS  PubMed  Google Scholar 

  34. Ergen, A., Boles, N. & Goodell, M. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119, 2500–2509 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennedy, D. & Knight, K. Inflammatory changes in bone marrow microenvironment associated with declining B lymphopoiesis. J. Immunol. 198, 3471–3479 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dorshkind, K. IL-1 inhibits B cell differentiation in long term bone marrow cultures. J. Immunol. 141, 531–538 (1988).

    CAS  PubMed  Google Scholar 

  37. Maeda, K. et al. IL-6 blocks a discrete early step in lymphopoiesis. Blood 106, 879–885 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Takizawa, H., Boettcher, S. & Manz, M. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991–3002 (2012).

    CAS  PubMed  Google Scholar 

  39. Fransceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Google Scholar 

  40. Schaue, D., Kackikwu, E. & McBride, W. Cytokines in radiobiological responses: a review. Radiat. Res. 178, 505–523 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Muller-Sieburg, C., Cho, R., Karlsson, L., Huang, J. & Sieburg, H. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103, 4111–4118 (2004).

    CAS  PubMed  Google Scholar 

  42. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    CAS  PubMed  Google Scholar 

  43. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    CAS  PubMed  Google Scholar 

  44. Challen, G., Boles, N., Chambers, S. & Goodell, M. Distinct hematopoietic stem cells subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6, 265–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Montecino-Rodriquez, E. et al. Lymphoid biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Rep. 12, 584–596 (2019).

    Google Scholar 

  47. Cho, R., Sieburg, H. & Muller-Sieburg, C. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not the individual stem cells. Blood 111, 5553–5561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wahlestedt, M. et al. Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. Nat. Commun. 8, 14533 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Young, K. et al. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging. J. Exp. Med. 213, 2259–2287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeager, A., Shinn, C. & Pardoll, D. Lymphoid reconstitution after transplantation of congenic hematopoietic cells in busulfan-treated mice. Blood 78, 3312–3316 (1991).

    CAS  PubMed  Google Scholar 

  51. Hsieh, M. et al. Low-dose parenteral busulfan provides an extended window for the infusion of hematopoietic stem cells in murine hosts. Exp. Hematol. 35, 1415–1420 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang, Y., Van Zant, G. & Szilvassy, S. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106, 1479–1480 (2006).

    Google Scholar 

  53. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016 (1996).

    CAS  PubMed  Google Scholar 

  54. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gazit, R. et al. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J. Exp. Med. 211, 1315–1331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    CAS  PubMed  Google Scholar 

  57. Sawai, C. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pei, W. et al. Polylox barcoding reveals haematopoeitic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oguro, H., Ding, L. & Morrison, S. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Säwen, P. et al. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. eLife 7, e41258 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Hofer, T., Busch, K., Klapproth, K. & Rodewald, H.-R. Fate mapping and quantitation of hematopoiesis in vivo. Annu. Rev. Immunol. 34, 4490478 (2016).

    Google Scholar 

  62. Hofer, T. & Rodewald, H.-R. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood 132, 1106–1113 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Ito, K. et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156–1160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schoedel, K. et al. The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128, 2285–2296 (2016).

    CAS  PubMed  Google Scholar 

  65. Sheikh, B. et al. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood 128, 2307–2318 (2016).

    CAS  PubMed  Google Scholar 

  66. Lu, R., Neff, N., Quake, S. & Weissman, I. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928–933 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    CAS  PubMed  Google Scholar 

  68. Geiger, H., Denkiger, M. & Schimbeck, R. Hematopoietic stem cell aging. Curr. Opin. Immunol. 29, 86–92 (2014).

    CAS  PubMed  Google Scholar 

  69. Chapple, R. et al. Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis. Blood Adv. 2, 1220–1228 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Upadhaya, S., Reizis, B. & Sawai, C. New genetic tools for the in vivo study of hematopoietic stem cell function. Exp. Hematol. 61, 26–35 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–11129 (2008).

    CAS  PubMed  Google Scholar 

  72. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  PubMed  Google Scholar 

  73. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    CAS  PubMed  Google Scholar 

  74. Anam, K., Black, A. & Hale, D. Low dose busulfan facilitates chimerism and tolerance in a murine model. Transpl. Immunol. 15, 199–204 (2006).

    CAS  PubMed  Google Scholar 

  75. Martins, V. et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature 509, 465–470 (2014).

    CAS  PubMed  Google Scholar 

  76. Signer, R. A. J., Montecino-Rodriguez, E., Witte, O. N. & Dorshkind, K. Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev. 22, 3115–3120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. King, A. M., Van der Put, E., Blomberg, B. B. & Riley, R. L. Accelerated notch-dependent degradation of E47 proteins in aged B cell precursors is associated with increased ERK MAPK activation. J. Immunol. 178, 3521–3529 (2007).

    CAS  PubMed  Google Scholar 

  78. Labrie, J. E., Sah, A. P., Allman, D. M., Cancro, M. P. & Gerstein, R. M. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J. Exp. Med. 200, 411–423 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Geiger, H. & Van Zant, G. The aging of lympho-hematopoietic stem cells. Nat. Immunol. 3, 329–333 (2002).

    CAS  PubMed  Google Scholar 

  80. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chambers, S. et al. Aging hematopoietic stem cells decline in function and exhibit epigentic dysregulation. PLOS Biol. 5, e201 (2007).

    PubMed  PubMed Central  Google Scholar 

  82. Kowalczyk, M. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rundberg Nilsson, A., Soneji, S., Adolfsson, S., Bryder, D. & Pronk, C. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLOS ONE 11, e0158369 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Kirschner, K. et al. Proliferation drives aging-related functional decline in a subpopulation of the hematopoietic stem cell compartment. Cell Rep. 19, 1503–1511 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10, 273–283 (2012).

    CAS  PubMed  Google Scholar 

  87. Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, C. Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Leins, H. et al. Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132, 565–576 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghosh, S., Twarri, R., Dixit, D. & Sen, E. TNF α induced oxidative stress dependent Akt signaling affects actin cytoskeletal organization in glioma cells. Neurochem. Int. 56, 194–201 (2010).

    CAS  PubMed  Google Scholar 

  91. Gadea, G. et al. TNFα induces sequenctial activation of Cdc42- and p38/p53-dependent pathways that antagonistically regulate filopodia formation. J. Cell Sci. 117, 6355–6364 (2004).

    CAS  PubMed  Google Scholar 

  92. Razidlo, G., Burton, K. & McNiven, M. Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. J. Biol. Chem. 293, 11143–11153 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research presented here was supported by grants to K.D. from the US National Institutes of Health (AG056480), Deutsche Forschungsgemeinschaft DFG-SFB 873-B11 to T.H. and H.-R.R., and European Research Council Advanced Grant 742883 and DFG Leibniz program to H.-R.R.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of concepts and/or the writing of the manuscript.

Corresponding authors

Correspondence to Kenneth Dorshkind or Hans-Reimer Rodewald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks F. Camargo, S. Morrison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Barcoding

Genetic tagging of cells with large numbers of distinct, and ideally unique, labels. Originally this was achieved by analyses of highly diverse integration sites of viral DNA in the genomes of cells infected in vitro, followed by cell transplantation and tracking of barcodes in progeny. More recently, endogenous barcoding has been developed, in which cells can be tagged in whole organisms without the need for cell manipulations in vitro. Examples of endogenous techniques include CRISPR–Cas9-based methods, transposon integration site analysis and Cre-dependent Polylox barcoding. When the probability of induction of a given barcode is smaller than the target population, it becomes highly likely that single cells are being labelled. Hence, endogenous barcoding can reveal precursor–product relationships emerging from single stem cells and can provide insights into lineage relationships.

Conditioning

The treatment of recipients before transplantation in order to create space in the bone marrow to allow for donor bone marrow cells to engraft. Conditioning regimens include drugs, such as 1,4-butanediol dimethanesulfonate (busulfan), and/or ionizing irradiation that kills endogenous stem and progenitor cells.

Fate-mapping approaches

Experimental approaches in which a single genetic switch, usually lineage-specific or stage-specific and sometimes inducible, is used to turn on a heritable marker in stem or progenitor cells. All progeny that arise from labelled cells can be tracked, which yields information on precursor–product relationships and on the flow of differentiation. Combined with mathematical analysis and modelling, fate mapping can reveal in situ frequencies of differentiating stem cells and progenitors and differentiation rates, independent of the vagaries of cell transplantation. The inducible Cre systems referred to in this article include Tie2–MerCreMer mice, Pdzk1ip1–CreER mice and Fgd5–CreERT2 mice.

Irradiation

Process in which a subject is exposed to radiation. Ionizing radiation can be delivered from caesium137 or cobalt60 γ-irradiators or X-ray devices. Both γ radiation and X-rays are highly penetrating and can travel into tissue, and as a result these forms of radiation are frequently used to deplete haematopoietic cells from the bone marrow before transplantation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorshkind, K., Höfer, T., Montecino-Rodriguez, E. et al. Do haematopoietic stem cells age?. Nat Rev Immunol 20, 196–202 (2020). https://doi.org/10.1038/s41577-019-0236-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0236-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing