Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming

A Publisher Correction to this article was published on 04 January 2024

This article has been updated

Abstract

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural diagram of each reprogramming factor.
Fig. 2: Timeline highlighting publications on partial reprogramming in mouse and human models.
Fig. 3: Summary of detailed in vivo whole-organism partial reprogramming protocols.
Fig. 4: Summary of detailed in vitro partial reprogramming protocols in mouse and human.

Similar content being viewed by others

Change history

References

  1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alle, Q., Borgne, E. L., Milhavet, O. & Lemaitre, J. M. Reprogramming: emerging strategies to rejuvenate aging cells and tissues. Int. J. Mol. Sci. 22, 8 (2021).

    Article  Google Scholar 

  6. Oberdoerffer, P. & Sinclair, D. A. The role of nuclear architecture in genomic instability and ageing. Nat. Rev. Mol. Cell Biol. 8, 692–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Villeponteau, B. The heterochromatin loss model of aging. Exp. Gerontol. 32, 383–394 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Cole, J. J. et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 18, 58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Martel, J. et al. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med. Res. Rev. 40, 2114–2131 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Mehdipour, M. et al. Plasma dilution improves cognition and attenuates neuroinflammation in old mice. Geroscience 43, 1–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Mehdipour, P. et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169–173 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e1712 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ros, M. & Carrascosa, J. M. Current nutritional and pharmacological anti-aging interventions. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165612 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Marión, R. M. et al. Common telomere changes during in vivo reprogramming and early stages of tumorigenesis. Stem Cell Rep. 8, 460–475 (2017).

    Article  Google Scholar 

  21. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Ahlenius, H. et al. FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc. Natl Acad, Sci, USA 113, 8514–8519 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Huh, C. J. et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife 5, e18648 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim, Y. et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 23, 2550–2558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marion, R. M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Suhr, S. T. et al. Telomere dynamics in human cells reprogrammed to pluripotency. PLoS ONE 4, e8124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, K. P., Han, D. W., Kim, J. & Schöler, H. R. Biological importance of OCT transcription factors in reprogramming and development. Nat. Exp. Mol. Med. 53, 1018–1028 (2021).

    Article  CAS  Google Scholar 

  32. Peskova, L., Cerna, K., Oppelt, J., Mraz, M. & Barta, T. OCT4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Nat. Sci. Rep. 9, 15759 (2019).

    Google Scholar 

  33. Radzisheuskaya, A. & Silva, J. C. R. Do all roads lead to OCT4? The emerging concepts of induced pluripotency. Trends Cell Biol. 24, 275–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, J. B. et al. Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, S. et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Papapetrou, E. P. et al. Stoichiometric and temporal requirements of OCT4, SOX2, KLF4, and c-MYC expression for efficient human iPSC induction and differentiation. Proc. Natl Acad. Sci. USA 106, 12759–12764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, K. et al. Heterochromatin loosening by the OCT4 linker region facilitates KLF4 binding and iPSC reprogramming. EMBO J. 39, 99165 (2020).

    Article  Google Scholar 

  38. Singhal, N. et al. Chromatin-remodeling components of the baf complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Singhal, N. et al. BAF complex enhances reprogramming of adult human fibroblasts. J. Stem Cell Res. Ther. 6, 336 (2016).

    Article  Google Scholar 

  40. Taberlay, P. C. et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 147, 1283–1294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fu, K. et al. Comparison of reprogramming factor targets reveals both species-specific and conserved mechanisms in early iPSC reprogramming. BMC Genomics 19, 956 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jerabek, S. et al. Changing POU dimerization preferences converts OCT6 into a pluripotency inducer. EMBO Rep. 18, 319–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. You, J. S. et al. OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proc. Natl Acad. Sci. USA 108, 14497–14502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loh, Y. H., Zhang, W., Chen, X., George, J. & Ng, H. H. JMJD1A and JMJD2C histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 21, 2545–2557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Novak, D. et al. SOX2 in development and cancer biology. Semin. Cancer Biol. 67, 74–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Michael, A. K. et al. Mechanisms of OCT4–SOX2 motif readout on nucleosomes. Science 368, 1460–1465 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. OCT-3/4 and SOX2 regulate OCT-3/4 gene in embryonic stem cells. J. Biol. Chem. 280, 5307–5317 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Reményi, A. et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of OCT4 and SOX2 on two enhancers. Genes Dev. 17, 2048–2059 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Malik, V. et al. Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for OCT4 and SOX2. Nat. Commun. 10, 3477 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schuetz, A. et al. The structure of the KLF4 DNA-binding domain links to self-renewal and macrophage differentiation. Cell Mol. Life Sci. 68, 3121–3131 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei, Z. et al. KLF4 organizes long-range chromosomal interactions with the OCT4 locus inreprogramming andpluripotency. Cell Stem Cell 13, 36–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakagawa, M. et al. Generation of induced pluripotent stem cells without MYC from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Rand, T. A. et al. MYC Releases early reprogrammed human cells from proliferation pause via retinoblastoma protein inhibition. Cell Rep. 23, 361–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith, Z. D., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol. 17, 139–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, L. et al. NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities. Biol. Open 8, bio047225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shahini, A. et al. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. Sci. Adv. 7, eabe5671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Esteban, M. A. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Lee Chong, T., Ahearn, E. L. & Cimmino, L. Reprogramming the epigenome with vitamin C. Front. Cell Dev. Biol. 7, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stadtfeld, M. et al. Ascorbic acid prevents loss of Dlk1–Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat. Genet. 44, 398–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, T. et al. The histone demethylases JHDM1A/1B enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9, 575–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Li, L. et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell 30, 283–299 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, H. et al. IL-6 coaxes cellular dedifferentiation as a pro-regenerative intermediate that contributes to pericardial ADSC-induced cardiac repair. Stem Cell Res. Ther 13, 44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    Article  PubMed  Google Scholar 

  69. Li, W., Wei, W. & Ding, S. TGF-β signaling in stem cell regulation. Methods Mol. Biol. 1344, 137–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, J. et al. BMPs functionally replace KLF4 and support efficient reprogramming of mouse fibroblasts by OCT4 alone. Cell Res 21, 205–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Guan, J. et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 605, 325–331 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Liuyang, S. et al. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming. Cell Stem Cell 30, 450–459 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Gill, D. et al. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. Elife 11, e71624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo, L. et al. Generation of induced progenitor-like cells from mature epithelial cells using interrupted reprogramming. Stem Cell Rep. 9, 1780–1795 (2017).

    Article  CAS  Google Scholar 

  76. Hishida, T. et al. In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Rep. 39, 110730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, D. et al. Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21, 819–833 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, J. et al. Hierarchical OCT4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming. Cell Rep. 14, 1540–1554 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Chronis, C. et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knaupp, A. S. et al. Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell 21, 834–845 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Narayan, S., Bryant, G., Shah, S., Berrozpe, G. & Ptashne, M. OCT4 and SOX2 work as transcriptional activators in reprogramming human fibroblasts. Cell Rep. 20, 1585–1596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2, 1579–1592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwarz, B. A. et al. Prospective isolation of poised iPSC intermediates reveals principles of cellular reprogramming. Cell Stem Cell 23, 289–305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koche, R. P. et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8, 96–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hussein, S. M. I. et al. Genome-wide characterization of the routes to pluripotency. Nature 516, 198–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45, 34–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Wei, J. et al. KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci. Rep. 7, 7514 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lee, D. S. et al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat. Commun. 5, 5619 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Papp, B. & Plath, K. Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324–1343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, X. et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat. Cell Biol. 15, 829–838 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  98. Wang, G. et al. Critical regulation of miR-200/ZEB2 pathway in OCT4/SOX2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc. Natl Acad. Sci. USA 110, 2858–2863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Manukyan, M. & Singh, P. B. Epigenetic rejuvenation. Genes Cells 17, 337–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Manukyan, M. & Singh, P. B. Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Nat. Sci. Rep. 4, 4789 (2014).

    CAS  Google Scholar 

  101. Singh, P. B. & Zacouto, F. Nuclear reprogramming and epigenetic rejuvenation. J. Biosci. 35, 315–319 (2010).

    Article  PubMed  Google Scholar 

  102. Kurian, L. et al. Conversion of human fibroblasts to angioblast-like progenitor cells. Nat. Methods 10, 77–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Rodríguez-Matellán, A., Alcazar, N., Hernández, F., Serrano, M. & Ávila, J. In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Rep. 15, 1056–1066 (2020).

    Article  Google Scholar 

  104. Alle, Q. et al. A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan. Aging Cell 21, e13714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Browder, K. C. et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chondronasiou, D. et al. Deciphering the roadmap of in vivo reprogramming toward pluripotency. Stem Cell Rep 17, 2501–2517 (2022).

    Article  CAS  Google Scholar 

  108. Macip, C. C. et al. Gene therapy mediated partial reprogramming extends lifespan and reverses age-related changes in aged mice. Preprint at bioRxiv, https://doi.org/10.1101/2023.01.04.522507 (2023).

  109. Doeser, M. C., Schöler, H. R. & Wu, G. Reduction of fibrosis and scar formation by partial reprogramming in vivo. Stem Cells 36, 1216–1225 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of OCT4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, C. et al. In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat. Commun. 12, 3094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Roux, A. E. et al. Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity. Cell Syst 13, 574–587 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Olova, N., Simpson, D. J., Marioni, R. E. & Chandra, T. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell 18, e12877 (2019).

    Article  PubMed  Google Scholar 

  115. Odelberg, S. J., Kollhoff, A. & Keating, M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Taghiyar, L. et al. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice. J. Biol. Chem. 292, 10520–10533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yilmaz, A. et al. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Res 15, 542–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Ribeiro, R. et al. In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. Nat. Aging 2, 397–411 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Ohnuki, M. et al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc. Natl Acad. Sci. USA 111, 12426–12431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Takahashi, K. Cellular reprogramming—lowering gravity on Waddington’s epigenetic landscape. J. Cell Sci. 125, 2553–2560 (2012).

    CAS  PubMed  Google Scholar 

  123. Takahashi, K. Cellular reprogramming. Cold Spring Harb. Perspect. Biol. 6, a018606 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kim, Y., Jeong, J. & Choi, D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp. Mol. Med. 52, 213–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, H., Yang, Y., Liu, J. & Qian, L. Direct cell reprogramming: approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol. 22, 410–424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, B., Trapp, A., Kerepesi, C. & Gladyshev, V. N. Emerging rejuvenation strategies—reducing the biological age. Aging Cell 21, e13538 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span—from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by: MCHRI, Woods Family Endowed Scholarship in Pediatric Translational Medicine (Stanford Maternal & Child Health Research Institute), the Breakthrough in Gerontology Award (BIG Award, AFAR/Glenn Foundation) and the Milky Way Research Foundation to V.S. By Paul F. Glenn Foundation for Medical Research and NIA/NIH grants R01AG019719 and R01DK100263 to D.A.S.

Author information

Authors and Affiliations

Authors

Contributions

A.C., M.M. and V.S. designed and conceived the Review. The manuscript was written by A.C., M.M. and S.M.L. M.M. wrote the reprogramming factors section, S.M.L. the partial reprogramming event section and A.C. the partial reprogramming sections. T.A.J. contributed by writing the additional factor section. A.C. generated the figures, with help from S.R. R.R.H. provided a major contribution to the editing process with help from A.P. and S.R. H.R.S. provided suggestions and contributed on the reprogramming factor section. The Review was supervised and edited by V.S. and D.A.S.

Corresponding authors

Correspondence to David A. Sinclair or Vittorio Sebastiano.

Ethics declarations

Competing interests

V.S. is a co-founder, SAB Chairman, Head of Research and shareholder of Turn Biotechnologies. D.A.S. is a consultant, inventor, board member and, in some cases, a founder and investor in Life Biosciences (a reprogramming company), EdenRock Sciences (Cantata, Metrobiotech), InsideTracker, Fully Aligned, Zymo, Galilei, Immetas, Animal Biosciences, Tally Health and others. For full information, see Supplementary File 1. The other authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Maria Abad, Manuel Collado and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipriano, A., Moqri, M., Maybury-Lewis, S.Y. et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat Aging 4, 14–26 (2024). https://doi.org/10.1038/s43587-023-00539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00539-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing