Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Age-associated decline in RAB-10 efficacy impairs intestinal barrier integrity

Subjects

Abstract

The age-related decline in the ability of the intestinal barrier to maintain selective permeability can lead to various physiological disturbances. Adherens junctions play a vital role in regulating intestinal permeability, and their proper assembly is contingent upon endocytic recycling. However, how aging affects the recycling efficiency and, consequently, the integrity of adherens junctions remains unclear. Here we show that RAB-10/Rab10 functionality is reduced during senescence, leading to impaired adherens junctions in the Caenorhabditis elegans intestine. Mechanistic analysis reveals that SDPN-1/PACSINs is upregulated in aging animals, suppressing RAB-10 activation by competing with DENN-4/GEF. Consistently, SDPN-1 knockdown alleviates age-related abnormalities in adherens junction integrity and intestinal barrier permeability. Of note, the inhibitory effect of SDPN-1 on RAB-10 requires KGB-1/JUN kinase, which presumably enhances the potency of SDPN-1 by altering its oligomerization state. Together, by examining age-associated changes in endocytic recycling, our study sheds light on how aging can impact intestinal barrier permeability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aging leads to dysfunction of the adherens junctions, RAB-10 functionality decline and SDPN-1 expression increase.
Fig. 2: SDPN-1 is involved in regulating the endosomal localization of RAB-10 and the architecture of adherens junctions.
Fig. 3: SDPN-1 exhibits a preferential association with RAB-10(GDP).
Fig. 4: SDPN-1 interacts with DENN-4 and disturbs the distribution of DENN-4.
Fig. 5: SDPN-1 competes with the DENN domain for binding to RAB-10(GDP) and impedes the DENN-4-induced activation of RAB-10.
Fig. 6: Analysis of the interacting interfaces between RAB-10(GDP) and SDPN-1 or DENN-4, and SDPN-1 dimer is the primary form that competes with DENN-4.
Fig. 7: DENN domain overexpression alleviates the RAB-10 cytosolic dispersion and hTAC recycling abnormalities associated with SDPN-1 excess, whereas SDPN-1 deficiency relieves the age-related deterioration of adherens junctions and intestinal barrier permeability.
Fig. 8: Lack of KGB-1/JNK3 mitigates RAB-10 cytosolic dispersal and adherens junctional mislocalization in cells overexpressing SDPN-1.

Similar content being viewed by others

Data availability

All the data that support the findings of this study are present in the paper and its Supplementary Information files. In addition, source data are available with the paper.

References

  1. Parrish, A. R. The impact of aging on epithelial barriers. Tissue Barriers 5, e1343172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Annese, V. et al. Dissecting genetic predisposition to inflammatory bowel disease: current progress and prospective application. Expert Rev. Clin. Immunol. 3, 287–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Henckaerts, L. et al. Mutations in pattern recognition receptor genes modulate seroreactivity to microbial antigens in patients with inflammatory bowel disease. Gut 56, 1536–1542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sandek, A., Anker, S. D. & von Haehling, S. The gut and intestinal bacteria in chronic heart failure. Curr. Drug Metab. 10, 22–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Walker, J. et al. High prevalence of abnormal gastrointestinal permeability in moderate-severe asthma. Clin. Invest. Med. 37, E53–E57 (2014).

    Article  PubMed  Google Scholar 

  6. Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528–21533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Egge, N. et al. Age-onset phosphorylation of a minor actin variant promotes intestinal barrier dysfunction. Dev. Cell 51, 587–601 e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krug, S. M., Schulzke, J. D. & Fromm, M. Tight junction, selective permeability, and related diseases. Semin. Cell Dev. Biol. 36, 166–176 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Y. M., Zhang, J. S. & Duan, X. L. Changes of microvascular architecture, ultrastructure and permeability of rat jejunal villi at different ages. World J. Gastroenterol. 9, 795–799 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Man, A. L. et al. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin. Sci. (Lond.) 129, 515–527 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Shao, X. et al. The adhesion modulation domain of Caenorhabditis elegans α-catenin regulates actin binding during morphogenesis. Mol. Biol. Cell 30, 2115–2123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955–1959 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Cox, E. A. & Hardin, J. Sticky worms: adhesion complexes in C. elegans. J. Cell Sci. 117, 1885–1897 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kwiatkowski, A. V. et al. In vitro and in vivo reconstitution of the cadherin–catenin–actin complex from Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 14591–14596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muller, H. A. & Bossinger, O. Molecular networks controlling epithelial cell polarity in development. Mech. Dev. 120, 1231–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Bernadskaya, Y. Y. et al. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol. Biol. Cell 22, 2886–2899 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raich, W. B., Agbunag, C. & Hardin, J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 9, 1139–1146 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Sumi, A. et al. Adherens junction length during tissue contraction is controlled by the mechanosensitive activity of actomyosin and junctional recycling. Dev. Cell 47, 453–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, H. et al. LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling. J. Cell Biol. 217, 299–314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gleason, A. M. et al. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine. Mol. Biol. Cell 27, 3746–3756 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Postema, M. M. et al. PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Mol. Biol. Cell 30, 2515–2526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cesar Machado, M. C. & da Silva, F. P. Intestinal barrier dysfunction in human pathology and aging. Curr. Pharm. Des. 22, 4645–4650 (2016).

    Article  PubMed  Google Scholar 

  23. Gelino, S. et al. Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLoS Genet. 12, e1006135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ma, Y. C. et al. YAP in epithelium senses gut barrier loss to deploy defenses against pathogens. PLoS Pathog. 16, e1008766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, B. et al. Olfactory perception of food abundance regulates dietary restriction-mediated longevity via a brain-to-gut signal. Nat Aging 1, 255–268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pickett, M. A. et al. Separable mechanisms drive local and global polarity establishment in the Caenorhabditis elegans intestinal epithelium. Development 149, dev200325 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gobel, V. et al. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev. Cell 6, 865–873 (2004).

    Article  PubMed  Google Scholar 

  29. Gleason, R. J. et al. BMP signaling requires retromer-dependent recycling of the type I receptor. Proc. Natl Acad. Sci. USA 111, 2578–2583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Z. et al. Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 117, 2968–2977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joseph, B. B. et al. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet. 19, e1010741 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, J. et al. An EHBP-1-SID-3-DYN-1 axis promotes membranous tubule fission during endocytic recycling. PLoS Genet. 16, e1008763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, A. et al. RAB-10-GTPase–mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc. Natl Acad. Sci. USA 109, E2306–E2315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, D. et al. SAC-1 ensures epithelial endocytic recycling by restricting ARF-6 activity. J. Cell Biol. 217, 2121–2139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borchers, A. C., Langemeyer, L. & Ungermann, C. Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J. Cell Biol. 220, e202105120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, O. & Grant, B. D. Basolateral endocytic recycling requires RAB-10 and AMPH-1 mediated recruitment of RAB-5 GAP TBC-2 to endosomes. PLoS Genet. 11, e1005514 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Donaldson, J. G. Arfs, phosphoinositides and membrane traffic. Biochem. Soc. Trans. 33, 1276–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Sano, H. et al. Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C. J. Biol. Chem. 286, 16541–16545 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshimura, S. et al. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191, 367–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sano, H. et al. Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 5, 293–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Lamber, E. P., Siedenburg, A. C. & Barr, F. A. Rab regulation by GEFs and GAPs during membrane traffic. Curr. Opin. Cell Biol. 59, 34–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Qualmann, B. & Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Modregger, J. et al. All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J. Cell Sci. 113, 4511–4521 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Yan, Y. et al. RTKN-1/Rhotekin shields endosome-associated F-actin from disassembly to ensure endocytic recycling. J. Cell Biol. 220, e202007149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dorland, Y. L. et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat. Commun. 7, 12210 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malinova, T. S. et al. A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nat. Commun. 12, 2610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi, A. et al. EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol. Biol. Cell 21, 2930–2943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, P. et al. RAB-10 promotes EHBP-1 bridging of filamentous actin and tubular recycling endosomes. PLoS Genet. 12, e1006093 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Vogel, G. F. et al. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J. Cell Biol. 211, 587–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Winter, J. F. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nat. Cell Biol. 14, 666–676 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Sakaguchi, A. et al. REI-1 is a guanine nucleotide exchange factor regulating RAB-11 localization and function in C. elegans embryos. Dev. Cell 35, 211–221 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Cordova-Burgos, L. et al. WAVE facilitates polarized E-cadherin transport. Mol. Biol. Cell 34, ar44 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grant, B. et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell Biol. 3, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Snider, C. E. et al. The state of F-BAR domains as membrane-bound oligomeric platforms. Trends Cell Biol. 31, 644–655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mayer, B. J. SH3 domains: complexity in moderation. J. Cell Sci. 114, 1253–1263 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Dumont, V. & Lehtonen, S. PACSIN proteins in vivo: roles in development and physiology. Acta Physiol. (Oxf.) 234, e13783 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, W. et al. LET-502/ROCK regulates endocytic recycling by promoting activation of RAB-5 in a distinct subpopulation of sorting endosomes. Cell Rep. 32, 108173 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  65. Mahmood, M. I., Noguchi, H. & Okazaki, K. I. Curvature induction and sensing of the F-BAR protein Pacsin1 on lipid membranes via molecular dynamics simulations. Sci. Rep. 9, 14557 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kessels, M. M. & Qualmann, B. Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J. Biol. Chem. 281, 13285–13299 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Halbach, A. et al. PACSIN 1 forms tetramers via its N-terminal F-BAR domain. FEBS J. 274, 773–782 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Hattori, A. et al. The Caenorhabditis elegans JNK signaling pathway activates expression of stress response genes by derepressing the Fos/HDAC repressor complex. PLoS Genet. 9, e1003315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Senju, Y. et al. Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J. Cell Sci. 128, 2766–2780 (2015).

    CAS  PubMed  Google Scholar 

  70. Sun, Y. N. et al. Amyotrophy induced by a high-fat diet is closely related to inflammation and protein degradation determined by quantitative phosphoproteomic analysis in skeletal muscle of C57BL/6 J mice. J. Nutr. 150, 294–302 (2020).

    Article  PubMed  Google Scholar 

  71. Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623–634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zilberman, Y. et al. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J. Cell Biol. 216, 3729–3744 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bai, Z. & Grant, B. D. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc. Natl Acad. Sci. USA 112, E1443–E1452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Watterson, A. et al. Loss of heat shock factor initiates intracellular lipid surveillance by actin destabilization. Cell Rep. 41, 111493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garcia, G. et al. Large-scale genetic screens identify BET-1 as a cytoskeleton regulator promoting actin function and life span. Aging Cell 22, e13742 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dumont, V. et al. PACSIN2 accelerates nephrin trafficking and is up-regulated in diabetic kidney disease. FASEB J. 31, 3978–3990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muller, M. P. & Goody, R. S. Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases 9, 5–21 (2018).

    Article  PubMed  Google Scholar 

  78. Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Qualmann, B. et al. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott–Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin, S. X. et al. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 3, 567–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Pant, S. et al. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat. Cell Biol. 11, 1399–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi, A. et al. A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr. Biol. 17, 1913–1924 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Legouis, R. et al. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat. Cell Biol. 2, 415–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Shigetomi, K. Adherens junctions influence tight junction formation via changes in membrane lipid composition. J. Cell Biol. 217, 2373–2381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Otani, T. & Furuse, M. Tight junction structure and function revisited. Trends Cell Biol. 30, 805–817 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Xu, S. et al. Targeted mutagenesis of duplicated genes in Caenorhabditis elegans using CRISPR–Cas9. J. Genet. Genomics 43, 103–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Frokjaer-Jensen, C. et al. Improved Mos1-mediated transgenesis in C. elegans. Nat. Methods 9, 117–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, X. et al. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J. Cell Biol. 221, e202111125 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Diao (University of Cincinnati College of Medicine) for assisting with imaging analysis and S. Xu (Zhejiang University) for the CRISPR–Cas9 single-copy transgene knock-in experiment setup. This work was supported by the National Key R&D Program of China (2021YFA1300302), the National Natural Science Foundation of China (32130027), the National Science Fund for Distinguished Young Scholars (31825017), the Major Research Plan of the Natural Science Foundation of China (92154001), all to A.S., and the China Postdoctoral Science Foundation (2020M672330), to J.Z. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., H.L. and A.S. designed the study. J.Z., Z.J., C.C. and Z.G. performed the experiments. J.Z., Z.J., C.C., L.Y., Z.G., Z.C. and Y.Y. contributed the reagents. J.Z., H.L. and A.S. analyzed the data. J.Z., H.L. and A.S. wrote the paper, with input and final approval from all authors.

Corresponding authors

Correspondence to Hang Liu or Anbing Shi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Aging thanks Peter Douglas, James Goldenring and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Aging does not impact apical endocytosis, cell polarity, or DLG-AJM domain distribution.

(A-Aꞌ) Confocal images showing apical uptake of rhodamine-dextran by intestinal cells in wild-type and rab-10(q373) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. ns: no significance. (B-Bꞌ) Confocal images showing localization of ERM-1::GFP. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. ns: no significance. (C-Cꞌ) Confocal images showing localization of PAR-3::GFP. Line-scan profile on day 1 and day 9 of adulthood. (D-Dꞌ) Confocal images showing DLG-1::GFP in wild-type (n = 70 and 86 junctions on Day 1 and 9 of adulthood) and rab-10(q373) (n = 96) animals. The percentages of animals carrying proper DLG-1::GFP distribution were calculated per time point, each with 30-35 animals. (E-Eꞌ) Confocal images showing AJM-1::GFP in wild-type (n = 87 and 94 junctions on Day 1 and 9 of adulthood) and rab-10(q373) (n = 80) animals. The percentages of animals carrying proper AJM-1::GFP distribution were calculated per time point, each with 30-35 animals. (F-Fꞌ) Confocal images showing DAF-4::GFP distribution in wild-type and rab-10(q373) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. *** p < 0.001 (p < 0.0001). (G-Gꞌ) Confocal images showing PPK-1::GFP distribution. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. ns: no significance. (H) mRNA level measurement indicating denn-4, let-413, and tbc-11 expressions. Data are the mean ± SEM of three repeats. (I-I’) The endogenous levels of DENN-4. The relative intensity of DENN-4 was calculated with reference to the Tubulin level. Data are the mean ± SEM of three repeats. P-value: two-sided Student’s t-test. *** p < 0.001 (p = 0.0005). (J-Jꞌ) Confocal images showing the localization of endogenous RAB-10 following RNAi-mediated SDPN-1 knockdown. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. *** p < 0.001 (p < 0.0001). Confocal images scale bars: 10 μm.

Source data

Extended Data Fig. 2 SDPN-1 is unlikely to engage in an interaction with RAB-8 or RAB-11.1.

(A-Bꞌ) Confocal images showing the distribution of GFP::RAB-8(SC KI) and GFP::RAB-11.1 in wild-type and sdpn-1(ok1667) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. ns: no significance. Scale bars: 10 μm. (C-Dꞌ) Confocal images showing the co-localization (upper panels: Z-axis focal plane; lower panels: Y-axis focal plane) between SDPN-1::GFP(SC KI) and tagRFP- or mCherry-tagged RAB-8 and RAB-11.1. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). Scale bars: 10 μm. (E-Eꞌ) Confocal images showing GFP::HMP-1 in wild-type (n = 91 junctions), rab-8(tm2526) (n = 90 junctions), and rab-11.1(RNAi) (n = 93 junctions) animals. Arrowheads indicate apical localization of GFP::HMP-1. The percentages of animals carrying irregular GFP::HMP-1 distribution were calculated, each with 30-35 animals. Scale bars: 10 μm. (F-Fꞌ) An examination of the adherens junctions was performed using TEM in wild-type, rab-8(tm2526), and rab-11.1(RNAi) animals. Red arrows indicate junction structures. Scale bars: 0.2 μm. Data are the average junction length ± SEM of 6 samples.

Source data

Extended Data Fig. 3 RAB-10 is not required for the membrane recruitment of SDPN-1.

(A-Aꞌꞌ) Confocal images showing the localization of SDPN-1::GFP (SC KI) in wild-type and rab-10(q373) animals, as well as rab-10(q373) overexpressing RAB-10(Q68L) or RAB-10(T23N). Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. The p values were obtained by a one-way ANOVA followed by a post-hoc test (Tukey’s Multiple Comparison Test) for multiple comparisons. The exact p values are indicated on the plot. (B-Cꞌ) Confocal images showing the localization of SDPN-1::GFP(SC KI) in wild-type, rab-10(q373), rab-10(q373);cup-5(RNAi), rab-10(q373);mvb-12(RNAi), and rab-10(q373);rpt-3(RNAi) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. The p values were obtained by a one-way ANOVA followed by a post-hoc test (Tukey’s Multiple Comparison Test) for multiple comparisons. The exact p values are indicated on the plot. (D-Eꞌ) Confocal images showing the co-localization between SDPN-1::GFP(SC KI) and FM4-64 or rhodamine-dextran. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). P-value: two-sided Mann-Whitney test. ns: no significance. (F) The membrane-to-cytosol ratio (P/S) of SDPN-1::GFP(SC KI) in wild-type and rab-10(q373) animals. SDPN-1 in the supernatants and pellets was analyzed by western blotting using an anti-GFP antibody. The loading control was blotted by the anti-α-tubulin antibody. The membrane binding status of SDPN-1 was evaluated in three experimental replicates, and the average ratios are displayed below the blots. (G) The level of SDPN-1::GFP(SC KI) in wild-type and rab-10(q373) animals. Three experimental replicates were conducted. Average intensities were calculated with reference to the tubulin level and are displayed beneath the blots. Confocal images scale bars: 10 μm.

Source data

Extended Data Fig. 4 The endosomal localization of SDPN-1 is mainly determined by PI(4,5)P2.

(A-Aꞌ) Confocal images showing the localization of SDPN-1::GFP(SC KI) in wild-type, rab-10(q373), rab-10(q373);ppk-1(RNAi), rab-10(q373);ppk-2(RNAi), rab-10(q373);ppk-3(RNAi), rab-10(q373);pifk-1(RNAi), rab-10(q373);age-1(RNAi), and rab-10(q373);vps-34(RNAi) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. The p values were obtained by a one-way ANOVA followed by a post-hoc test (Tukey’s Multiple Comparison Test) for multiple comparisons. The exact p values are indicated on the plot. (B-Dꞌ) Confocal images showing the co-localization (Z-axis focal plane) between SDPN-1::GFP (SC KI) and mCherry-tagged PI(4,5)P2 biosensor Tubby-PH(R332H), PI(3)P biosensor 2xFYVE, and PI(4)P biosensor P4M in the intestinal cells. Arrowheads indicate structures labeled by both GFP and mCherry. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). P-value: two-sided Mann-Whitney test. ns: no significance. Confocal images scale bars: 10 μm.

Source data

Extended Data Fig. 5 Loss of SDPN-1 does not affect the subcellular distribution and membrane association of RAB-5.

(A-Aꞌ) Confocal images showing GFP::RAB-5 in wild-type and sdpn-1(ok1667) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. *** p < 0.001 (p < 0.0001). (B) The membrane-to-cytosol ratio (P/S) of GFP::RAB-5 in wild-type and sdpn-1(ok1667) animals. RAB-5 in the supernatants and pellets was analyzed by western blotting using an anti-GFP antibody. The loading control was blotted by the anti-α-tubulin antibody. The ratios are displayed beneath the blots. (C-Cꞌꞌ) Confocal images showing the co-localization (upper panels: Z-axis focal plane; lower panels: Y-axis focal plane) between SDPN-1::GFP(SC KI) and tagRFP- or mCherry-tagged RAB-5, EHBP-1, RAB-7, MANS, and SP12. Arrowheads indicate structures labeled by both GFP and tagRFP or mCherry. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). Confocal images scale bars: 10 μm.

Source data

Extended Data Fig. 6 SDPN-1 interacts with DENN-4 and its activating factor LET-413.

(A) Western blot showing GST pulldown with in vitro translated HA-tagged GDI-1 and TBC-11. (B) Western blot showing GST pulldown with in vitro translated HA-SDPN-1. (C) Western blot showing GST pulldown with in vitro translated HA-tagged DENN-4 fragments (1-720 aa and 721-1544 aa). (D) Western blot showing GST pulldown with in vitro translated HA-tagged LET-413 fragments (LRR domain and PDZ domain). (E-Eꞌ) Confocal images showing the co-localization (upper panels: Z-axis focal plane; lower panels: Y-axis focal plane) between SDPN-1::GFP(SC KI) and mCherry-tagged LET-413. Arrowheads indicate structures labeled by both GFP and mCherry. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). (F-Fꞌꞌ) Confocal images showing SDPN-1::GFP(SC KI) in wild-type and denn-4(RNAi) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. *** p < 0.001 (p < 0.0001), ns: no significance (p = 0.874). (G-Gꞌ) Confocal images showing the localization of LET-413::GFP in wild-type, sdpn-1(ok1667), and SDPN-1 overexpressing animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. Asterisks indicate the significant differences in a one-way ANOVA followed by a post-hoc test (Dunn’s Multiple Comparison Test) for multiple comparisons. *** p < 0.001 (p < 0.0001). (H-Hꞌꞌ) Confocal images showing SDPN-1::GFP(SC KI) in wild-type and let-413(RNAi) animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. *** p < 0.001 (p < 0.0001), ns: no significance (p = 0.1664). Three experimental replicates were conducted to validate the results obtained from all pull-down assays. Confocal images scale bars: 10 μm.

Source data

Extended Data Fig. 7 The presence of SDPN-1 does not interfere with the LET-413-DENN-4 or LET-413-RAB-10 interaction.

(A-Aꞌ) Western blot showing GST pulldown with in vitro translated HA-LET-413. In the presence of SDPN-1, the interaction between DENN-4(721-1544 aa) and LET-413 was not affected. Three independent experiments are represented in the histogram, and the p values were obtained by two-sided Mann-Whitney test. Data are the mean ± SEM, ns: no significance (p = 0.9853). (B-Bꞌ) Western blot showing GST pulldown with in vitro translated HA-RAB-10(T23N). In the presence of SDPN-1, the interaction between RAB-10(T23N) and LET-413 was not affected. Three independent experiments are represented in the histogram, and the p values were obtained by two-sided Mann-Whitney test. Data are the mean ± SEM, ns: no significance (p = 0.3765). (C-Dꞌ) Confocal images showing the co-localization (Z-axis focal plane) between GFP-tagged DENN-4 or RAB-10 and LET-413::mCherry. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). P-value: two-sided Mann-Whitney test. ns: no significance. Confocal images scale bars: 10 μm.

Source data

Extended Data Fig. 8 Analysis of the binding regions between RAB-10(GDP) and SDPN-1 or DENN-4.

(A-E) Western blot showing GST pulldown with in vitro translated HA-tagged RAB-10(T23N) mutants. (Eꞌ) Three independent experiments are represented in the histogram. The p values were obtained by a one-way ANOVA followed by a post-hoc test (Tukey’s Multiple Comparison Test) for multiple comparisons. The exact p values are indicated on the plot. Data are the mean ± SEM.

Source data

Extended Data Fig. 9 KGB-1 acts as the primary upstream regulator of the RAB-10-SDPN-1 module to exert age-related effects on adherens junctions through its impact on endocytic recycling.

(A-Aꞌ) Confocal images showing the localization of ACT-5::GFP in wild-type, rab-10(q373), and SDPN-1 overexpressing animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. P-value: two-sided Mann-Whitney test. ns: no significance. (B-Bꞌ) Confocal images showing GFP::HMP-1 in wild-type (n = 73 and 72 junctions on Day 1 and 9 of adulthood) and DENN domain overexpressing (n = 73 junctions) animals. Arrowheads indicate apical and lateral localization of GFP::HMP-1. The percentages of animals carrying irregular GFP::HMP-1 distribution were calculated, each with 30-35 animals. (C-Cꞌ) Confocal images showing the localization of hTAC::GFP in wild-type, sdpn-1(RNAi), sdpn-1(RNAi);rab-10(q373), and DENN domain overexpressing animals. Box-and-whiskers (n = 24 regions): 10-90 percentile; dots, outliers; red midline, median of wild-type; boundaries, quartiles. The p values were obtained by a one-way ANOVA followed by a post-hoc test (Tukey’s Multiple Comparison Test) for multiple comparisons. The exact p values are indicated on the plot. (D-D’) Endogenous levels of SDPN-1 in both wild-type and kgb-1(RNAi) animals. The relative intensity of SDPN-1 was calculated with reference to the tubulin level. Data are the mean ± SEM of three repeats. P-value: two-sided Student’s t-test. ns: no significance. (E) mRNA level measurement indicating sdpn-1 expression in both wild-type and kgb-1(RNAi) animals. Data are the mean ± SEM of three repeats. (F) The absence of phosphorylation in the serine, threonine, and tyrosine residues of SDPN-1. Three experimental replicates were conducted to validate the results. (G-Gꞌ) Confocal images showing the co-localization between SDPN-1::GFP(SC KI) and KGB-1::mCherry(SC KI) in 1-day-old and 9-day-old adult animals. DAPI channel (blue color) indicates broad-spectrum intestinal autofluorescence. Mander’s coefficients were calculated using the Z-stack confocal slices, data are the mean with 95% CIs (n = 9 animals). P-value: two-sided Mann-Whitney test. *** p < 0.001 (p < 0.0001). (H-H’) Native-PAGE of purified Flag-SDPN-1 in the presence or absence of KGB-1. Three independent experiments are represented in the histogram. Data are the mean ± SEM. P-value: two-sided Student’s t-test. *** p < 0.001 (p = 0.0007). Confocal images scale bars: 10 μm.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Antibodies. The commercial antibodies used in this study are outlined in detail.

Supplementary Table 2

Bacterial strains. Bacterial strains were employed in this study for nematode feeding and protein expression.

Supplementary Table 3

Critical commercial assays. A detailed list of the molecular biology and biochemical reagents used in this research is included.

Supplementary Table 4

Chemicals, peptides and recombinant proteins. This table outlines the protein purification, protein function and other chemical reagents used in this study.

Supplementary Table 5

Organisms/strains. This table presents the nematode strains employed in this study, including both mutant and transgenic strains. Recombinant DNA. This table contains the vectors that have been prepared in this study for transgenic expression and in vitro protein expression. Oligonucleotides. This table primarily contains primers for CRISPR–Cas gene editing and vector sequencing.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Statistical Source Data.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 7

Statistical Source Data.

Source Data Fig. 8

Statistical Source Data.

Source Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 1

1 Statistical Source Data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 8

Statistical Source Data.

Source Data Extended Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 9

Statistical Source Data.

Source Data Extended Data Fig. 9

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiang, Z., Chen, C. et al. Age-associated decline in RAB-10 efficacy impairs intestinal barrier integrity. Nat Aging 3, 1107–1127 (2023). https://doi.org/10.1038/s43587-023-00475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00475-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing