Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations

Subjects

Abstract

With recent rapid progress in research on aging, there is increasing evidence that many features commonly considered to be mechanisms or drivers of aging in fact represent adaptations. Here, we examine several such features, including cellular senescence, epigenetic aging and stem cell alterations. We draw a distinction between the causes and consequences of aging and define short-term consequences as ‘responses’ and long-term ones as ‘adaptations’. We also discuss ‘damaging adaptations’, which despite having beneficial effects in the short term, lead to exacerbation of the initial insult and acceleration of aging. Features commonly recognized as ‘basic mechanisms of the aging process’ are critically examined for the possibility of their adaptation-driven emergence from processes such as cell competition and the wound-like features of the aging body. Finally, we speculate on the meaning of these interactions for the aging process and their relevance for the development of antiaging interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationships between the causes and consequences of the aging process.
Fig. 2: Cellular senescence as an adaptation to damage in tissues.
Fig. 3: Age-related changes in DNA methylation are associated with diverse processes.
Fig. 4: Age-associated alterations of stem cells are driven to a large extent by adaptations to a degrading niche.

Similar content being viewed by others

References

  1. Kristiansen, M. & Ham, J. Programmed cell death during neuronal development: the sympathetic neuron model. Cell Death Differ. 21, 1025–1035 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wright, L. L., Cunningham, T. J. & Smolen, A. J. Developmental neuron death in the rat superior cervical sympathetic ganglion: cell counts and ultrastructure. J. Neurocytol. 12, 727–738 (1983).

    CAS  PubMed  Google Scholar 

  3. Mohania, D. et al. Ultraviolet radiations: skin defense-damage mechanism. Adv. Exp. Med. Biol. 996, 71–87 (2017).

    CAS  PubMed  Google Scholar 

  4. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    CAS  PubMed  Google Scholar 

  7. Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 1096–1106 (2021).

    PubMed  PubMed Central  Google Scholar 

  8. Lindenboim, L., Zohar, H., Worman, H. J. & Stein, R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov. 6, 29 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Karbowski, M. Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis. Adv. Exp. Med. Biol. 687, 131–142 (2010).

    CAS  PubMed  Google Scholar 

  10. Ring, N. A. R., Valdivieso, K., Grillari, J., Redl, H. & Ogrodnik, M. The role of senescence in cellular plasticity: lessons from regeneration and development and implications for age-related diseases. Dev. Cell 57, 1083–1101 (2022).

    CAS  PubMed  Google Scholar 

  11. Ogrodnik, M., Salmonowicz, H. & Gladyshev, V. N. Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell 18, e12841 (2019).

    PubMed  Google Scholar 

  12. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogrodnik, M. Cellular aging beyond cellular senescence: markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 20, e13338 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    PubMed  Google Scholar 

  16. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  PubMed  Google Scholar 

  17. Ring, N. A. R. et al. The p-rpS6-zone delineates wounding responses and the healing process. Dev. Cell 58, 981–992 (2023).

    PubMed  Google Scholar 

  18. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blagosklonny, M. V. Cell senescence, rapamycin and hyperfunction theory of aging. Cell Cycle 21, 1456–1467 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ogrodnik, M., Salmonowicz, H., Jurk, D. & Passos, J. F. Expansion and cell-cycle arrest: common denominators of cellular senescence. Trends Biochem. Sci. 44, 996–1008 (2019).

    CAS  PubMed  Google Scholar 

  21. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    CAS  PubMed  Google Scholar 

  23. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Nelson, G., Kucheryavenko, O., Wordsworth, J. & von Zglinicki, T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech. Ageing Dev. 170, 30–36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Martins, S. G., Zilhão, R., Thorsteinsdóttir, S. & Carlos, A. R. Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components. Front. Genet. 12, 673002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fisher, G. J. et al. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am. J. Pathol. 174, 101–114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet. 39, 99–105 (2007).

    CAS  PubMed  Google Scholar 

  29. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kowald, A. & Kirkwood, T. B. L. Senolytics and the compression of late-life mortality. Exp. Gerontol. 155, 111588 (2021).

    CAS  PubMed  Google Scholar 

  31. Grosse, L. et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99 (2020).

    CAS  PubMed  Google Scholar 

  32. Helman, A. et al. p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 22, 412–420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Behmoaras, J. & Gil, J. Similarities and interplay between senescent cells and macrophages. J. Cell Biol. 220, e202010162 (2021).

    CAS  PubMed  Google Scholar 

  34. Fielder, E., von Zglinicki, T. & Jurk, D. The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis. 60, S107–S131 (2017).

    CAS  PubMed  Google Scholar 

  35. Brevini, T. A. L., Manzoni, E. F. M. & Gandolfi, F. Methylation mechanisms and biomechanical effectors controlling cell fate. Reprod. Fertil. Dev. 30, 64–72 (2017).

    PubMed  Google Scholar 

  36. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    CAS  PubMed  Google Scholar 

  37. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS  PubMed  Google Scholar 

  38. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS  PubMed  Google Scholar 

  39. Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Meer, M. V., Podolskiy, D. I., Tyshkovskiy, A. & Gladyshev, V. N. A whole lifespan mouse multi-tissue DNA methylation clock. eLife 7, e40675 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Trapp, A., Kerepesi, C. & Gladyshev, V. N. Profiling epigenetic age in single cells. Nat. Aging 1, 1189–1201 (2021).

    PubMed  PubMed Central  Google Scholar 

  43. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Belsky, D. W. et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife 11, e73420 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    CAS  PubMed  Google Scholar 

  46. Verdikt, R. & Allard, P. Metabolo-epigenetics: the interplay of metabolism and epigenetics during early germ cells development. Biol. Reprod. 105, 616–624 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Bierne, H., Hamon, M. & Cossart, P. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2, a010272 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Lelièvre, S. A. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. Biochim. Biophys. Acta 1790, 925–935 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Qin, W., Scicluna, B. P. & van der Poll, T. The role of host cell DNA methylation in the immune response to bacterial infection. Front. Immunol. 12, 696280 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kabacik, S. et al. The relationship between epigenetic age and the hallmarks of aging in human cells. Nat. Aging 2, 484–493 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Hernando-Herraez, I. et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Lewis, S. K. et al. DNA methylation analysis validates organoids as a viable model for studying human intestinal aging. Cell Mol. Gastroenterol. Hepatol. 9, 527–541 (2020).

    PubMed  Google Scholar 

  53. Hoshino, A., Horvath, S., Sridhar, A., Chitsazan, A. & Reh, T. A. Synchrony and asynchrony between an epigenetic clock and developmental timing. Sci. Rep. 9, 3770 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Hernández-Martínez, R., Ramkumar, N. & Anderson, K. V. p120-catenin regulates WNT signaling and EMT in the mouse embryo. Proc. Natl Acad. Sci. USA 116, 16872–16881 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Brunet, A., Goodell, M. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    CAS  PubMed  Google Scholar 

  56. Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, J.-H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326 (2023).

    CAS  PubMed  Google Scholar 

  58. Ying, K. et al. Causal epigenetic age uncouples damage and adaptation. Preprint at bioRxiv https://doi.org/10.1101/2022.10.07.511382 (2022).

  59. Levine, M. E., Higgins-Chen, A., Thrush, K., Minteer, C. & Niimi, P. Clock Work: deconstructing the epigenetic clock signals in aging, disease, and reprogramming. Preprint at bioRxiv https://doi.org/10.1101/2022.02.13.480245 (2022).

  60. Weeden, C. E. & Asselin-Labat, M.-L. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 89–101 (2018).

    CAS  PubMed  Google Scholar 

  61. Vitale, I., Manic, G., De Maria, R., Kroemer, G. & Galluzzi, L. DNA damage in stem cells. Mol. Cell 66, 306–319 (2017).

    CAS  PubMed  Google Scholar 

  62. Li, J. S. Z. & Denchi, E. L. How stem cells keep telomeres in check. Differentiation 100, 21–25 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pattabiraman, S. et al. Vimentin protects differentiating stem cells from stress. Sci. Rep. 10, 19525 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Morrow, C. S. et al. Vimentin coordinates protein turnover at the aggresome during neural stem cell quiescence exit. Cell Stem Cell 26, 558–568 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, e417 (2006).

    PubMed  PubMed Central  Google Scholar 

  66. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sacma, M. et al. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat. Cell Biol. 21, 1309–1320 (2019).

    CAS  PubMed  Google Scholar 

  68. Kalamakis, G. et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176, 1407–1419 (2019).

    CAS  PubMed  Google Scholar 

  69. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, N. et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature 568, 344–350 (2019).

    CAS  PubMed  Google Scholar 

  71. Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    PubMed  Google Scholar 

  72. Schüler, S. C. et al. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality. Cell Rep. 35, 109223 (2021).

    PubMed  Google Scholar 

  73. Ichijo, R. et al. Vasculature atrophy causes a stiffened microenvironment that augments epidermal stem cell differentiation in aged skin. Nat. Aging 2, 592–600 (2022).

    CAS  PubMed  Google Scholar 

  74. Shimabukuro, M. K. et al. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci. Rep. 6, 23795 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fry, C. S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).

    CAS  PubMed  Google Scholar 

  77. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    CAS  PubMed  Google Scholar 

  78. Plikus, M. V. et al. Epithelial stem cells and implications for wound repair. Semin. Cell Dev. Biol. 23, 946–953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pils, V. et al. Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mech. Ageing Dev. 200, 111588 (2021).

    CAS  PubMed  Google Scholar 

  80. Yamamoto, R. et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22, 600–607 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kelly, L. S., Darden, D. B., Fenner, B. P., Efron, P. A. & Mohr, A. M. The hematopoietic stem/progenitor cell response to hemorrhage, injury, and sepsis: a review of pathophysiology. Shock 56, 30–41 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kumar, D. & Rizvi, S. I. Markers of oxidative stress in senescent erythrocytes obtained from young and old age rats. Rejuvenation Res. 17, 446–452 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Kosower, N. S. Altered properties of erythrocytes in the aged. Am. J. Hematol. 42, 241–247 (1993).

    CAS  PubMed  Google Scholar 

  84. Samaja, M., Rovida, E., Motterlini, R. & Tarantola, M. in Red Blood Cell Aging (eds Magnani, M. & De Flora, A.) 115–123 (Springer, 1991).

  85. Bazgir, B., Fathi, R., Rezazadeh Valojerdi, M., Mozdziak, P. & Asgari, A. Satellite cells contribution to exercise mediated muscle hypertrophy and repair. Cell J. 18, 473–484 (2017).

    PubMed  Google Scholar 

  86. Karalaki, M., Fili, S., Philippou, A. & Koutsilieris, M. Muscle regeneration: cellular and molecular events. In Vivo 23, 779–796 (2009).

    CAS  PubMed  Google Scholar 

  87. Mahdy, M. A. A. Skeletal muscle fibrosis: an overview. Cell Tissue Res. 375, 575–588 (2019).

    PubMed  Google Scholar 

  88. García-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol. 22, 1307–1318 (2020).

    PubMed  Google Scholar 

  89. Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    CAS  PubMed  Google Scholar 

  91. Lightfoot, A. P., McCormick, R., Nye, G. A. & McArdle, A. Mechanisms of skeletal muscle ageing; avenues for therapeutic intervention. Curr. Opin. Pharmacol. 16, 116–121 (2014).

    CAS  PubMed  Google Scholar 

  92. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    CAS  PubMed  Google Scholar 

  93. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuribayashi, W. et al. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J. Exp. Med. 218, e20192283 (2021).

    CAS  PubMed  Google Scholar 

  96. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    CAS  PubMed  Google Scholar 

  97. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nat. Immunol. 5, 133–139 (2004).

    CAS  PubMed  Google Scholar 

  98. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    PubMed  Google Scholar 

  99. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tierney, M. T., Stec, M. J., Rulands, S., Simons, B. D. & Sacco, A. Muscle stem cells exhibit distinct clonal dynamics in response to tissue repair and homeostatic aging. Cell Stem Cell 22, 119–127 (2018).

    CAS  PubMed  Google Scholar 

  102. Tovy, A. et al. Tissue-biased expansion of DNMT3A-mutant clones in a mosaic individual is associated with conserved epigenetic erosion. Cell Stem Cell 27, 326–335 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, N. & Sen, P. The senescent cell epigenome. Aging 10, 3590–3609 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cristofalo, V. J. Cellular biomarkers of aging. Exp. Gerontol. 23, 297–307 (1988).

    CAS  PubMed  Google Scholar 

  106. Igarashi, N. et al. Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells. Nat. Commun. 13, 4157 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Medawar, P. B. Old age and natural death. Mod. Q. 1, 30–56 (1946).

    Google Scholar 

  108. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Google Scholar 

Download references

Acknowledgements

We thank H. Salmonowicz who developed the original illustrations for this manuscript and N. Ring for proofreading the manuscript. The Research Group Senescence and Healing of Wounds is a collaboration between the Ludwig Boltzmann Gesellschaft and the Austrian Workers’ Compensation Board, with support from the Austrian Nationalstiftung. V.N.G. is supported by National Institute on Aging grants, the James Fickel and Michael Antonov Foundations, and the Impetus grant program. M.O. is supported by Der Wissenschaftsfonds grant nos. P35382 and P36483 and a Federation of European Biochemical Societies Excellence Award.

Author information

Authors and Affiliations

Authors

Contributions

M.O. wrote the first draft. M.O. and V.N.G. extended, revised and finalized the manuscript.

Corresponding authors

Correspondence to Mikolaj Ogrodnik or Vadim N. Gladyshev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Karl Lenhard Rudolph and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogrodnik, M., Gladyshev, V.N. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. Nat Aging 3, 766–775 (2023). https://doi.org/10.1038/s43587-023-00447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00447-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing