Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Distinguishing between driver and passenger mechanisms of aging

Abstract

Understanding why we age is a long-standing question, and many mechanistic theories of aging have been proposed. Owing to limitations in studying the aging process, including a lack of adequate quantitative measurements, its mechanistic basis remains a subject of debate. Here, I explore theories of aging from the perspective of causal relationships. Many aging-related changes have been observed and touted as drivers of aging, including molecular changes in the genome, telomeres, mitochondria, epigenome and proteins and cellular changes affecting stem cells, the immune system and senescent cell buildup. Determining which changes are drivers and not passengers of aging remains a challenge, however, and I discuss how animal models and human genetic studies have been used empirically to infer causality. Overall, our understanding of the drivers of human aging is still inadequate; yet with a global aging population, elucidating the causes of aging has the potential to revolutionize biomedical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of different types of causal relationship between variables.
Fig. 2: Selection of proposed mechanisms of aging based on age-related changes.
Fig. 3: Major approaches to study the causality of aging mechanisms.

Similar content being viewed by others

References

  1. Woodcox, A. Aristotle’s theory of aging. In Cahiers des Études Anciennes 65–78 (2018).

  2. de Magalhães, J. P. In An Introduction to Gerontology (ed. Stuart-Hamilton, I.) 21–47 (Cambridge Univ. Press, 2011).

  3. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Weinert, B. T. & Timiras, P. S. Invited review: theories of aging. J. Appl. Physiol. 95, 1706–1716 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. de Magalhães, J. P. et al. Human Ageing Genomic Resources: updates on key databases in ageing research. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad927 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gems, D. & de Magalhães, J. P. The hoverfly and the wasp: a critique of the hallmarks of aging as a paradigm. Ageing Res. Rev. 70, 101407 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Magalhães, J. P., Lagger, C. & Tacutu, R. In Handbook of the Biology of Aging 151–171 (Elsevier, 2021).

  8. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Pon, J. R. & Marra, M. A. Driver and passenger mutations in cancer. Annu. Rev. Pathol. 10, 25–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  12. Cristofalo, V. J. & Pignolo, R. J. Replicative senescence of human fibroblast-like cells in culture. Physiol. Rev. 73, 617–638 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Gosden, R. Cheating Time (W.H. Freeman, 1996).

  15. Bartke, A. et al. Genes that prolong life: relationships of growth hormone and growth to aging and life span. J. Gerontol. A Biol. Sci. Med. Sci. 56, B340–B349 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. de Magalhães, J. P. Open-minded scepticism: inferring the causal mechanisms of human ageing from genetic perturbations. Ageing Res. Rev. 4, 1–22 (2005).

    Article  PubMed  Google Scholar 

  17. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Proctor, R. N. The history of the discovery of the cigarette–lung cancer link: evidentiary traditions, corporate denial, global toll. Tob. Control 21, 87–91 (2012).

    Article  PubMed  Google Scholar 

  19. Keshavarz, M., Xie, K., Schaaf, K., Bano, D. & Ehninger, D. Targeting the ‘hallmarks of aging’ to slow aging and treat age-related disease: fact or fiction? Mol. Psychiatry 28, 242–255 (2023).

    Article  PubMed  Google Scholar 

  20. Xie, K. et al. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat. Commun. 13, 6830 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. de Magalhães, J. P. The genetics of a long life. Science 377, 1489–1490 (2022).

    Article  PubMed  ADS  Google Scholar 

  22. Weindruch, R. & Walford, R. L. The Retardation of Aging and Disease by Dietary Restriction (C.C. Thomas, 1988).

  23. Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA 92, 4818–4822 (1995).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Martin, G. M., Austad, S. N. & Johnson, T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat. Genet. 13, 25–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Partridge, L. & Gems, D. Mechanisms of ageing: public or private? Nat. Rev. Genet. 3, 165–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed  Google Scholar 

  29. Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    Google Scholar 

  30. Lapointe, J. & Hekimi, S. When a theory of aging ages badly. Cell. Mol. Life Sci. 67, 1–8 (2010).

    Article  CAS  Google Scholar 

  31. de Magalhães, J. P. & Church, G. M. Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp. Gerontol. 41, 1–10 (2006).

    Article  PubMed  Google Scholar 

  32. Freitas, A. A. & de Magalhães, J. P. A review and appraisal of the DNA damage theory of ageing. Mutat. Res. 728, 12–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Vijg, J. From DNA damage to mutations: all roads lead to aging. Ageing Res. Rev. 68, 101316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franco, I., Revechon, G. & Eriksson, M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell 21, e13613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narayanan, L., Fritzell, J. A., Baker, S. M., Liskay, R. M. & Glazer, P. M. Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2. Proc. Natl Acad. Sci. USA 94, 3122–3127 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bratic, A. & Larsson, N. G. The role of mitochondria in aging. J. Clin. Invest. 123, 951–957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Demanelis, K. et al. Determinants of telomere length across human tissues. Science 369, eaaz6876 (2020).

  42. Simons, M. J. Questioning causal involvement of telomeres in aging. Ageing Res. Rev. 24, 191–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. de Magalhães, J. P. & Toussaint, O. Telomeres and telomerase: a modern fountain of youth? Rejuvenation Res. 7, 126–133 (2004).

    Article  Google Scholar 

  44. Bernardes de Jesus, B. et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Magalhães, J. P. & Passos, J. F. Stress, cell senescence and organismal ageing. Mech. Ageing Dev. 170, 2–9 (2018).

    Google Scholar 

  46. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  47. Biran, A. et al. Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661–671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Avelar, R. A. et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 21, 91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Grosse, L. et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Arrojo, E. D. R. et al. Age mosaicism across multiple scales in adult tissues. Cell Metab. 30, 343–351 (2019).

    Article  Google Scholar 

  53. Signer, R. A. & Morrison, S. J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12, 152–165 (2013).

    CAS  Google Scholar 

  54. Ahlqvist, K. J. et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 15, 100–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014).

    Article  PubMed  Google Scholar 

  56. Desdin-Mico, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Martin, G. M. The genetics and epigenetics of altered proliferative homeostasis in ageing and cancer. Mech. Ageing Dev. 128, 9–12 (2007).

    CAS  Google Scholar 

  59. Martinez-Miguel, V. E. et al. Increased fidelity of protein synthesis extends lifespan. Cell Metab. 33, 2288–2300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Cassidy, L. D. et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat. Commun. 11, 307 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Bjedov, I. et al. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet. 16, e1009083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pyo, J. O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013).

    Article  PubMed  ADS  Google Scholar 

  64. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  66. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alle, Q. et al. A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan. Aging Cell 21, e13714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goh, A. M., Coffill, C. R. & Lane, D. P. The role of mutant p53 in human cancer. J. Pathol. 223, 116–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Javidnia, S. et al. Mendelian randomization analyses implicate biogenesis of translation machinery in human aging. Genome Res. 32, 258–265 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Collier, J. J. et al. Developmental consequences of defective ATG7-mediated autophagy in humans. N. Engl. J. Med. 384, 2406–2417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  75. Robinson, P. S. et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 53, 1434–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson, P. S. et al. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat. Commun. 13, 3949 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Savage, S. A. & Alter, B. P. Dyskeratosis congenita. Hematol. Oncol. Clin. North Am. 23, 215–231 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Munoz-Lorente, M. A., Cano-Martin, A. C. & Blasco, M. A. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat. Commun. 10, 4723 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Codd, V. et al. Polygenic basis and biomedical consequences of telomere length variation. Nat. Genet. 53, 1425–1433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuo, C. L., Pilling, L. C., Kuchel, G. A., Ferrucci, L. & Melzer, D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 261,000 older participants. Aging Cell 18, e13017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schneider, C. V. et al. Association of telomere length with risk of disease and mortality. JAMA Intern. Med. 182, 291–300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Magalhães, J. P. Every gene can (and possibly will) be associated with cancer. Trends Genet. 38, 216–217 (2022).

    Article  PubMed  Google Scholar 

  83. de Magalhães, J. P. Ageing as a software design flaw. Genome Biol. 24, 51 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. de Magalhães, J. P. Longevity pharmacology comes of age. Drug Discov. Today 26, 1559–1562 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to current and past members of the Genomics of Ageing and Rejuvenation Lab for valuable discussions and in particular H. Fitzmaurice, I. Viegas and P. Clark for comments on previous drafts. Work in our laboratory is supported by grants from the Wellcome Trust, Longevity Impetus Grants, LongeCity and the Biotechnology and Biological Sciences Research Council. During the preparation of this work, I used AI-assisted tools, Grammarly, QuillBot and ChatGPT, to improve readability and language. After using these tools, I reviewed and edited the text as needed and take full responsibility for the content of the publication. In trying to cover such a broad topic in a limited amount of space, I apologize to colleagues whose relevant works I was unable to cite.

Author information

Authors and Affiliations

Authors

Contributions

J.P.d.M. conceived and wrote the article.

Corresponding author

Correspondence to João Pedro de Magalhães.

Ethics declarations

Competing interests

J.P.d.M. is the CSO of YouthBio Therapeutics, a company developing rejuvenation gene therapies based on partial reprogramming, an advisor or consultant for the Longevity Vision Fund, 199 Biotechnologies and NOVOS and the founder of Magellan Science, a company providing consulting services in longevity science.

Peer review

Peer review information

Nature Genetics thanks Tamir Chandra and Abraham Aviv for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Magalhães, J.P. Distinguishing between driver and passenger mechanisms of aging. Nat Genet 56, 204–211 (2024). https://doi.org/10.1038/s41588-023-01627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01627-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing