Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial mapping of cellular senescence: emerging challenges and opportunities

Abstract

Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Senescence is a complex cell fate that alters almost every aspect of cell biology.
Fig. 2: Senescence communicates with neighboring cells and alters their function via the SASP.
Fig. 3: Spatially resolved methods for mapping senescent cells and studying senescence-associated pathology.
Fig. 4: Examples of exploratory strategies used by the University of Minnesota Tissue Mapping Center to identify senescence in liver samples using both the 10x Genomics Visium and the NanoString GeoMx platforms.
Fig. 5: Image data analysis of senescent cells.
Fig. 6: Nuclear morphology predicts senescence in tissues.

Similar content being viewed by others

References

  1. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    CAS  PubMed  Google Scholar 

  2. Robbins, P. D. et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu. Rev. Pharmacol. Toxicol. 61, 779–803 (2021).

    CAS  PubMed  Google Scholar 

  3. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Born, E. et al. Eliminating senescent cells can promote pulmonary hypertension development and progression. Circulation 147, 650–666 (2023).

    CAS  PubMed  Google Scholar 

  5. Reyes, N. S. et al. Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung. Science 378, 192–201 (2022).

    CAS  PubMed  Google Scholar 

  6. Severino, J., Allen, R. G., Balin, S., Balin, A. & Cristofalo, V. J. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162–171 (2000).

    CAS  PubMed  Google Scholar 

  7. Hall, B. M. et al. Aging of mice is associated with p16Ink4a- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294–1315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ogrodnik, M., Salmonowicz, H., Jurk, D. & Passos, J. F. Expansion and cell-cycle arrest: common denominators of cellular senescence. Trends Biochem. Sci. 44, 996–1008 (2019).

    CAS  PubMed  Google Scholar 

  9. Biran, A. et al. Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661–671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Google Scholar 

  11. Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Google Scholar 

  12. Zhang, X. et al. Characterization of cellular senescence in aging skeletal muscle. Nat. Aging 2, 601–615 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogrodnik, M. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lagnado, A. et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 40, e106048 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Laberge, R. M., Awad, P., Campisi, J. & Desprez, P. Y. Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. 5, 39–44 (2012).

    CAS  PubMed  Google Scholar 

  18. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, P. J. et al. NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nat. Aging 2, 1090–1100 (2022).

    Google Scholar 

  20. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Georgakopoulou, E. A. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5, 37–50 (2013).

    CAS  PubMed  Google Scholar 

  22. Wang, C. et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323 (2009).

    CAS  PubMed  Google Scholar 

  23. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Davalos, A. R. et al. p53-dependent release of alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, J. et al. A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice. Nat. Commun. 13, 7028 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    PubMed  Google Scholar 

  27. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    CAS  PubMed  Google Scholar 

  28. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J. Cell Biol. 203, 929–942 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077 (2019).

    Google Scholar 

  32. Valli, J. et al. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297, 100791 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boumendil, C., Hari, P., Olsen, K. C. F., Acosta, J. C. & Bickmore, W. A. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev. 33, 144–149 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodier, F. et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124, 68–81 (2011).

    CAS  PubMed  Google Scholar 

  35. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

  36. Rocha, A., Dalgarno, A. & Neretti, N. The functional impact of nuclear reorganization in cellular senescence. Brief. Funct. Genomics 21, 24–34 (2022).

    Google Scholar 

  37. Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  38. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

    PubMed  Google Scholar 

  40. Chandra, T. et al. Global reorganization of the nuclear landscape in senescent cells. Cell Rep. 10, 471–483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sati, S. et al. 4D genome rewiring during oncogene-induced and replicative senescence. Mol. Cell 78, 522–538 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022).

    CAS  PubMed  Google Scholar 

  43. Taylor, M. J., Liyu, A., Vertes, A. & Anderton, C. R. Ambient single-cell analysis and native tissue imaging using laser-ablation electrospray ionization mass spectrometry with increased spatial resolution. J. Am. Soc. Mass Spectrom. 32, 2490–2494 (2021).

    CAS  PubMed  Google Scholar 

  44. Buczak, K. et al. Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nat. Protoc. 15, 2956–2979 (2020).

    CAS  PubMed  Google Scholar 

  45. Lin, J. R., Fallahi-Sichani, M., Chen, J. Y. & Sorger, P. K. Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr. Protoc. Chem. Biol. 8, 251–264 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

  47. Stallaert, W. et al. The structure of the human cell cycle. Cell Syst. 13, 230–240 (2022).

    CAS  PubMed  Google Scholar 

  48. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

  51. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    CAS  PubMed  Google Scholar 

  52. Kiss, T. et al. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience 44, 661–681 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, P. et al. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol. Neurodegener. 17, 5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tower, R. J. et al. Spatial transcriptomics reveals metabolic changes underly age-dependent declines in digit regeneration. eLife 11, e71542 (2022).

  55. Gracia Villacampa, E. et al. Genome-wide spatial expression profiling in formalin-fixed tissues. Cell Genom. 1, 100065 (2021).

    CAS  Google Scholar 

  56. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    CAS  PubMed  Google Scholar 

  57. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol., https://doi.org/10.1038/s41587-023-01676-0 (2023).

  59. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y., Enninful, A., Deng, Y. & Fan, R. Spatial transcriptome sequencing of FFPE tissues at cellular level. Preprint at bioRxiv https://doi.org/10.1101/2020.10.13.338475 (2020).

  61. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    CAS  PubMed  Google Scholar 

  63. Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633 (2022).

    CAS  PubMed  Google Scholar 

  64. Zhang, W. et al. Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA. Nat. Methods 19, 759–769 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Heckenbach, I. et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat. Aging 2, 742–755 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sage, D. & Unser, M. A. Teaching image-processing programming in Java. IEEE Signal Process. Mag. 20, 43–52 (2003).

    Google Scholar 

  67. Bannon, D. et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (MICCAI 2018. Lecture Notes in Computer Science), vol 11071) (eds Frangi, A. et al.) 265–273 (Springer, 2018).

  69. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 (MICCAI 2015. Lecture Notes in Computer Science, vol 9351) (eds. Navab, N. et al.) 234–241 (Springer, 2015).

  70. Hollandi, R. et al. nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 10, 453–458 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dayao, M. T., Brusko, M., Wasserfall, C. & Bar-Joseph, Z. Membrane marker selection for segmenting single cell spatial proteomics data. Nat. Commun. 13, 1999 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dimopoulos, S., Mayer, C. E., Rudolf, F. & Stelling, J. Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics 30, 2644–2651 (2014).

    CAS  PubMed  Google Scholar 

  73. Czech, E., Aksoy, B. A., Aksoy, P. & Hammerbacher, J. Cytokit: a single-cell analysis toolkit for high dimensional fluorescent microscopy imaging. BMC Bioinformatics 20, 448 (2019).

    Google Scholar 

  74. Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

    CAS  PubMed  Google Scholar 

  75. Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17, 101–106 (2020).

    CAS  PubMed  Google Scholar 

  76. Littman, R. et al. Joint cell segmentation and cell type annotation for spatial transcriptomics. Mol. Syst. Biol. 17, e10108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, D. et al. TraSig: inferring cell–cell interactions from pseudotime ordering of scRNA-seq data. Genome Biol. 23, 73 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).

    CAS  PubMed  Google Scholar 

  80. Song, Q., Wang, J. & Bar-Joseph, Z. scSTEM: clustering pseudotime ordered single-cell data. Genome Biol. 23, 150 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, D., Ding, J. & Bar-Joseph, Z. Identifying signaling genes in spatial single-cell expression data. Bioinformatics 37, 968–975 (2021).

    CAS  PubMed  Google Scholar 

  82. Yuan, Y. & Bar-Joseph, Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 21, 300 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    CAS  PubMed  Google Scholar 

  86. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022).

    CAS  PubMed  Google Scholar 

  88. Chu, T., Wang, Z., Pe’er, D. & Danko, C. G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505–517 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Han, R., Luo, Y., Wang, M. & Zhang, A. R. Exact clustering in tensor block model: statistical optimality and computational limit. J. R. Stat. Soc. B Stat. Methodol. 84, 1666–1698 (2022).

    Google Scholar 

  90. Wu, M., Huang, J. & Ma, S. Identifying gene–gene interactions using penalized tensor regression. Stat. Med. 37, 598–610 (2018).

    PubMed  Google Scholar 

  91. Burlingame, E. A. et al. SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning. Sci. Rep. 10, 17507 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tian, T., Yang, Z. & Li, X. Tissue clearing technique: recent progress and biomedical applications. J. Anat. 238, 489–507 (2021).

    PubMed  Google Scholar 

  95. Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Methods 19, 1490–1499 (2022).

    CAS  PubMed  Google Scholar 

  96. Sandkühler, R., Jud, C., Andermatt, S. & Cattin, P. C. AirLab: Autograd Image Registration Laboratory. Preprint at arXiv https://doi.org/10.48550/arXiv.1806.09907 (2018).

  97. Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

    PubMed  Google Scholar 

  98. Chiaruttini, N. et al. An open-source whole slide image registration workflow at cellular precision using Fiji, QuPath and elastix. Front. Comput. Sci. 3, https://doi.org/10.3389/fcomp.2021.780026 (2022).

  99. Kusumoto, D. et al. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat. Commun. 12, 257 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

  101. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  104. Kinkhabwala, A. et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci. Rep. 12, 1911 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hennig, C., Adams, N. & Hansen, G. A versatile platform for comprehensive chip-based explorative cytometry. Cytometry A 75, 362–370 (2009).

    PubMed  Google Scholar 

  106. Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 51, e47 (2023).

  107. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    CAS  PubMed  Google Scholar 

  108. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH Common Fund, through the Office of Strategic Coordination and the Office of the NIH Director under awards UG3CA268103 (J.F.P., A.B.L., S.V., D.J.), U54AG075931 (A.U.G., A.L.M., D.B., H.C., J.K.A., M.B., M. Königshoff., O.E., Q.H., T.K.), UG3CA268202 (N.N.), U54AG075941 (J.H.C.), UG3CA268091 (J.H.L.), UG3CA268096 (R.D., X.F.), U54AG075931 (Z.B.-J.), U24CA268108 (Z.B.-J.), U54AG076041 (L.J.N., A.C.N., E.L.T., S.P., F.R., G.B.), U54AG075936 (A.R.Z., Z.J.), U54AG079758 (P.D.A., Q.Z., R.A.P.), U54AG076040 (H.P., J.P.), U54 AG075932 (D.F., A.A.G., C.B., F.W., I.H.), UG3CA268112 (V.S., M. Kumar.). We thank A. Impagliazzo for her work on the illustrations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the manuscript and reviewed and approved of its submission for publication. A.U.G., M.B., V.S., O.E., J.K.A. and J.F.P. contributed to the Main; J.F.P., D.J., Q.H., D.B., S.V., N.N., M.S., J.H., J.P. and H.P. contributed to Low-plex imaging methods; G.B., F.R., A.C.N., A.B.L., M. Kumar., L.J.N., S.P. and E.L.T. contributed to High-plex imaging methods; A.E., J.H.L., T.K., A.L.M., X.F., R.D., A.C.N., P.D.A., Q.Z. and R.A.P. contributed to Spatial transcriptomics; J.H.C., H.C., T.P., Z.J., Z.B.-J and A.A.G. contributed to Image data analysis of senescent cells; A.A.G., C.B., D.F., F.W., M.S.K. and I.H. contributed to Use of deep learning methods to identify senescent cells. J.F.P. designed and coordinated the writing of the Review.

Corresponding author

Correspondence to João F. Passos.

Ethics declarations

Competing interests

J.H.L. is an inventor on pending patent applications related to Seq-Scope. All other authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Jesus Gil, Kristina Kirschner, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurkar, A.U., Gerencser, A.A., Mora, A.L. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat Aging 3, 776–790 (2023). https://doi.org/10.1038/s43587-023-00446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00446-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing