Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreasing resilience of China’s coupled nitrogen–phosphorus cycling network requires urgent action

Abstract

The coupled nature of the nitrogen (N) and phosphorus (P) cycling networks is of critical importance for sustainable food systems. Here we use material flow and ecological network analysis methods to map the N–P-coupled cycling network in China and evaluate its resilience. Results show a drop in resilience between 1980 and 2020, with further decreases expected by 2060 across different socio-economic pathways. Under a clean energy scenario with additional N and P demand, the resilience of the N–P-coupled cycling network would suffer considerably, especially in the N layer. China’s socio-economic system may also see greater N emissions to the environment, thus disturbing the N cycle and amplifying the conflict between energy and food systems given the scarcity of P. Our findings on scenario-specific synergies and trade-offs can aid the management of N- and P-cycling networks in China by reducing chemical fertilizer use and food waste, for example.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of the N–P-coupled cycling network of China in 2020.
Fig. 2: Schematic model of N–P-coupled cycling network in China during 1980–2020.
Fig. 3: Historical trends and future evolution of resilience of N- and P-cycling networks in China during 1980–2060.
Fig. 4: Nodes influencing the resilience of the N–P-coupled cycling network in China during 1980–2020 and specific time periods.
Fig. 5: Structural indicators of the N–P-coupled cycling network in 2060 under the SSP scenarios and changes in the network resilience compared with that in 2020.
Fig. 6: Changes in the resilience of the N–P-coupled cycling network under different measures in comparison with the baseline year of 2020.

Similar content being viewed by others

Data availability

Data are mainly collected from (1) statistical yearbooks including China Statistical Yearbook, China Agricultural Yearbook, China Industrial Economic Statistical Yearbook and National Agricultural Product Cost Benefit Compilation; (2) international statistical databases including IIASA’s SSP database (https://tntcat.iiasa.ac.at/SspDb/), FAOSTAT (https://www.fao.org/faostat/zh/#home), and UN Comtrade (https://comtradeplus.un.org/). All the data sources are publicly available. All data generated from this study are available on figshare via https://doi.org/10.6084/m9.figshare.24467494. Source data are provided with this paper.

Code availability

The computer codes generated from this study are available on figshare via https://doi.org/10.6084/m9.figshare.24467494.

References

  1. Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  2. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  ADS  CAS  Google Scholar 

  3. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. National Bureau of Statistics of China. China Statistical Yearbook 2020 (China Statistics Press, 2020).

  5. Barbieri, P., MacDonald, G. K., Bernard de Raymond, A. & Nesme, T. Food system resilience to phosphorus shortages on a telecoupled planet. Nat. Sustain. 5, 114–122 (2022).

    Article  Google Scholar 

  6. Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).

    Article  Google Scholar 

  8. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Elser, J. & Bennett, E. A broken biogeochemical cycle. Nature 478, 29–31 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Peñuelas, J. & Sardans, J. The global nitrogen–phosphorus imbalance. Science 375, 266–267 (2022).

    Article  ADS  PubMed  Google Scholar 

  11. Luo, Z., Hu, S., Chen, D. & Zhu, B. From production to consumption: a coupled human-environmental nitrogen flow analysis in China. Environ. Sci. Technol. 52, 2025–2035 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Liu, X. et al. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl Acad. Sci. USA 113, 2609–2614 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai, Z. et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030. Nutr. Cycl. Agroecosystems 104, 361–372 (2016).

    Article  Google Scholar 

  14. Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H. & Zhu, Y.-G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl Acad. Sci. USA 110, 2052–2057 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang, S. et al. Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012. Nat. Food 1, 365–375 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, Z. et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nat. Food 3, 161–168 (2022).

    Article  PubMed  Google Scholar 

  17. Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Schleuss, P. M., Widdig, M., Heintz-Buschart, A., Kirkman, K. & Spohn, M. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology 101, e03003 (2020).

    Article  PubMed  Google Scholar 

  19. Duhamel, S. et al. Phosphorus as an integral component of global marine biogeochemistry. Nat. Geosci. 14, 359–368 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Ulanowicz, R. E. The dual nature of ecosystem dynamics. Ecol. Model. 220, 1886–1892 (2009).

    Article  Google Scholar 

  21. Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Chang. Biol. 26, 1962–1985 (2020).

    Article  ADS  PubMed  Google Scholar 

  22. Krouk, G. & Kiba, T. Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 104–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Kanter, D. R. & Brownlie, W. J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 92, 1–8 (2019).

    Article  CAS  Google Scholar 

  24. Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022).

    Article  ADS  CAS  Google Scholar 

  25. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article  Google Scholar 

  26. Spears, B. M., Brownlie, W. J., Cordell, D., Hermann, L. & Mogollón, J. M. Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector. Commun. Mater. 3, 14 (2022).

    Article  Google Scholar 

  27. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  28. Nyström, M. et al. Anatomy and resilience of the global production ecosystem. Nature 575, 98–108 (2019).

    Article  ADS  PubMed  Google Scholar 

  29. Ulanowicz, R. E. Growth and Development: Ecosystems Phenomenology (Springer, 1986).

  30. Kharrazi, A., Rovenskaya, E. & Fath, B. Network structure impacts global commodity trade growth and resilience. PLoS ONE 12, e0171184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zeng, J. Thoughts on food security and financial countermeasures (in Chinese). Econ. Res. Ref. 3, 32–44 (2007).

    Google Scholar 

  32. Decision of the Central Committee of the Communist Party of China on several major issues in agriculture and rural work. Ministry of Agriculture and Rural Affairs of the People’s Republic of China http://www.moa.gov.cn/ztzl/xzgnylsn/gd/200909/t20090923_1356562.htm (1998).

  33. Jiang, C. Y. & Wang, Y. China’s achievements, experience and thinking in promoting food security during 70 years since the founding of the People’s Republic of China (in Chinese). Agric. Econ. Prob. 10, 10–23 (2019).

    Google Scholar 

  34. Action plan for zero increase in fertilizer use by 2020. Ministry of Agriculture https://www.gov.cn/xinwen/2015-12/21/content_5026037.htm (2015).

  35. Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, M., Kroeze, C., Strokal, M. & Ma, L. Reactive nitrogen losses from China’s food system for the shared socioeconomic pathways (SSPs). Sci. Total Environ. 605–606, 884–893 (2017).

    Article  ADS  PubMed  Google Scholar 

  37. Zhao, H. et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4, 1042–1051 (2021).

    Article  Google Scholar 

  38. Ritchie, H., Roser, M. & Rosado, P. Fertilizers. Our World in Data https://ourworldindata.org/fertilizers (2022).

  39. van Grinsven, H. J. M. et al. Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nat. Food 3, 122–132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hossain, M. Z. et al. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2, 379–420 (2020).

    Article  ADS  Google Scholar 

  41. Huang, Y. et al. The shift of phosphorus transfers in global fisheries and aquaculture. Nat. Commun. 11, 355 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goda, A., Saad, A., Hanafy, M., Sharawy, Z. & El-Haroun, E. Dietary effects of Azolla pinnata combined with exogenous digestive enzyme (DigestinTM) on growth and nutrients utilization of freshwater prawn, Macrobrachium rosenbergii (de Man. 1879). J. Oceanol. Limnol. 36, 1434–1441 (2018).

    Article  ADS  CAS  Google Scholar 

  43. Nagappan, S. et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 341, 1–20 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Sarker, P. K. et al. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci. Rep. 10, 19328 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gustavsson, J. et al. Global Food Losses and Food Waste—Extent, Causes and Prevention (FAO, 2011).

  46. Xue, L. et al. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2, 519–528 (2021).

    Article  PubMed  Google Scholar 

  47. Law of the People’s Republic of China on Food Waste. The National People’s Congress of the People’s Republic of China http://www.npc.gov.cn/npc/c2/c30834/202104/t20210429_311263.html (2021).

  48. Climate change and land. IPCC https://www.ipcc.ch/srccl (2019).

  49. Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Fath, B. D. Quantifying economic and ecological sustainability. Ocean Coast. Manag. 108, 13–19 (2015).

    Article  Google Scholar 

  51. Fang, D. & Chen, B. Ecological network analysis for a virtual water network. Environ. Sci. Technol. 49, 6722–6730 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Goerner, S. J., Lietaer, B. & Ulanowicz, R. E. Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecol. Econ. 69, 76–81 (2009).

    Article  Google Scholar 

  53. Chen, S. & Chen, B. Urban energy–water nexus: a network perspective. Appl. Energy 184, 905–914 (2016).

    Article  ADS  CAS  Google Scholar 

  54. Sheng, Y. & Song, L. Agricultural production and food consumption in China: a long-term projection. China Econ. Rev. 53, 15–29 (2019).

    Article  Google Scholar 

  55. SSP database. International Institute for Applied Systems Analysis https://tntcat.iiasa.ac.at/SspDb/ (2018).

  56. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  57. Ammonia Technology Roadmap Towards More Sustainable Nitrogen Fertiliser Production (International Energy Agency, 2021).

  58. Zhou, H., Liu, Z., Cheng, M., Zhou, M. & Liu, R. Influence of coke combustion on NOx emission during iron ore sintering. Energy Fuels 29, 974–984 (2015).

    Article  CAS  Google Scholar 

  59. Yang, X., Nielsen, C. P., Song, S. & McElroy, M. B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 7, 955–965 (2022).

    Article  ADS  CAS  Google Scholar 

  60. In-depth report on new energy materials industry: lithium iron phosphate revival, triple opportunities for phosphorus chemical industry (in Chinese). The Founder Securities Company http://finance.sina.com.cn/stock/stockzmt/2021-08-01/doc-ikqciyzk8929058.shtml (2019).

  61. 2021–2027 China lithium hexafluorophosphate industry market research analysis and investment strategic planning report (in Chinese). The Smart Research Consulting Company https://www.chyxx.com/research/202101/925289.html (2021).

  62. Kober, T., Schiffer, H. W., Densing, M. & Panos, E. Global energy perspectives to 2060—WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 31, 100523 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

S.H. acknowledges funding from the National Key R and D Program of China (2018YFC1903801), Y.Y. acknowledges funding from the National Natural Science Foundation of China (72074077 and 72140006), B.Z. acknowledges funding from the National Natural Science Foundation of China (41661144023) and S.L. acknowledges funding from the National Natural Science Foundation of China (72293602 and 72293600).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and S.H. designed the study. Z.L. and Y.Y. collected data and conducted calculations. Y.Y., Z.L., S.H. and A.K. led the analysis. Z.L., Y.Y., S.H., A.K., B.D.F., K.M., S.L., D.C., B.Z. and T.M. contributed to the writing.

Corresponding authors

Correspondence to Yadong Yu or Shanying Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Vilma Sandström and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–11, Tables 2–21, Notes and References.

Reporting Summary

Supplementary Table 1

The list of nodes in the China’ s N- and P-coupled cycling network.

Source data

Source Data Fig. 3

Historical trends and future evolution of resilience of N- and P-cycling networks in China during 1980–2060.

Source Data Fig. 4

Nodes influencing the resilience of the N–P-coupled cycling network in China during 1980–2020 and specific time periods.

Source Data Fig. 5

Structural indicators of the N–P-coupled cycling network in 2060 under the SSP scenarios and changes in the network resilience compared with that in 2020.

Source Data Fig. 6

Changes in the resilience of the N–P-coupled cycling network under different measures in comparison with the baseline year of 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Yu, Y., Kharrazi, A. et al. Decreasing resilience of China’s coupled nitrogen–phosphorus cycling network requires urgent action. Nat Food 5, 48–58 (2024). https://doi.org/10.1038/s43016-023-00889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00889-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing