Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air quality improvements can strengthen China’s food security

Abstract

Air pollution exerts crucial influence on crop yields and impacts regional and global food supplies. Here we employ a statistical model using satellite-based observations and flexible functional forms to analyse the synergistic effects of reductions in ozone and aerosols on China’s food security. The model consistently shows that ozone is detrimental to crops, whereas aerosol has variable effects. China’s maize, rice and wheat yields are projected to increase by 7.84%, 4.10% and 3.43%, respectively, upon reaching two air quality targets (60 μg m−3 for peak-season ozone and 35 μg m−3 for annual fine particulate matter). Average calories produced from these crops would surge by 4.51%, potentially allowing China to attain grain self-sufficiency 2 years earlier than previously estimated. These results show that ozone pollution control should be a high priority to increase staple crop edible calories, and future stringent air pollution regulations would enhance China’s food security.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AOT40 and AOD response functions for three crops.
Fig. 2: SIF changes between counterfactual and historical scenarios for three crops.
Fig. 3: Countrywide yield trends and averaged changes in observed and counterfactual scenarios during 2005–2019.
Fig. 4: Countrywide caloric contents and average changes in observed and counterfactual scenarios during 2005–2019.

Similar content being viewed by others

Data availability

All original source data are publicly available with details listed in Supplementary Table 3.

Code availability

The code used for preparing, modelling and generating results is available at https://github.com/XiangLiu-github/China_SIF_air_pollution_Code.

References

  1. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  2. Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, K. et al. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl Acad. Sci. USA 116, 422–427 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Proietti, C., Anav, A., Marco, A. D., Sicard, P. & Vitale, M. A multi-sites analysis on the ozone effects on gross primary production of European forests. Sci. Total Environ. 556, 1–11 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Yue, X., Keenan, T. F., Munger, W. & Unger, N. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest. Glob. Change Biol. 22, 3750–3759 (2016).

    Article  ADS  Google Scholar 

  6. Heagle, A. S. Ozone and crop yield. Annu. Rev. Phytopathol. 27, 397–423 (1989).

    Article  CAS  Google Scholar 

  7. Peng, J. et al. Ozone exposure- and flux-yield response relationships for maize. Environ. Pollut. 252, 1–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Broberg, M. C., Feng, Z., Xin, Y. & Pleijel, H. Ozone effects on wheat grain quality-A summary. Environ. Pollut. 197, 203–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi, K. Effects of ozone on dry matter partitioning and yield of Japanese cultivars of rice (Oryza sativa L.). Agric. Ecosyst. Environ. 53, 109–122 (1995).

    Article  CAS  Google Scholar 

  10. Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560, 480–483 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Jägermeyr, J. et al. A regional nuclear conflict would compromise global food security. Proc. Natl Acad. Sci. USA 117, 7071–7081 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Gu, L. et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–2038 (2003).

    Article  ADS  PubMed  Google Scholar 

  13. Li, T. et al. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Ann. Bot. 114, 145–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, H. et al. Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect. Atmos. Chem. Phys. 22, 693–709 (2022).

    Article  ADS  CAS  Google Scholar 

  15. Kanniah, K. D., Beringer, J., North, P. & Hutley, L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity. Prog. Phys. Geogr. 36, 209–237 (2012).

    Article  Google Scholar 

  16. Proctor, J. Atmospheric opacity has a nonlinear effect on global crop yields. Nat. Food 2, 166–173 (2021).

    Article  PubMed  Google Scholar 

  17. Durand, M. et al. Diffuse solar radiation and canopy photosynthesis in a changing environment. Agric. For. Meteorol. 311, 108684 (2021).

    Article  Google Scholar 

  18. Wang, X. et al. Intermediate aerosol loading enhances photosynthetic activity of croplands. Geophys. Res. Lett. 48, e2020GL091893 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Cui, K. & Shoemaker, S. P. A look at food security in China. npj Sci. Food 2, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, G. et al. On the accuracy of official Chinese crop production data: evidence from biophysical indexes of net primary production. Proc. Natl Acad. Sci. USA 117, 25434–25444 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, Z. et al. Change in grain production in China and its impacts on spatial supply and demand distributions in recent two decades. Nat. Resour. J. 36, 1413 (2021).

    Google Scholar 

  22. Ni, K. & He, A. Analysis on the situation of grain supply and demand in China. World Agric. 2, 10–18 (2021).

    Google Scholar 

  23. Food Security in China White Paper (The State Council Information Office of the People’s Republic of China, 2019).

  24. Feng, Z. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3, 47–56 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Gao, Y. et al. Atmospheric aerosols elevated ecosystem productivity of a poplar plantation in Beijing, China. Can. J. For. Res. 51, 1440–1449 (2021).

    Article  CAS  Google Scholar 

  26. He, L. et al. Marked impacts of pollution mitigation on crop yields in China. Earth’s Future 10, e2022EF002936 (2022).

    Article  ADS  Google Scholar 

  27. Feng, Z., Kobayashi, K. & Ainsworth, E. A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob. Change Biol. 14, 2696–2708 (2008).

    Article  ADS  Google Scholar 

  28. Lin, M. et al. Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nat. Clim. Change 10, 444–451 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Liu, X. & Desai, A. R. Significant reductions in crop yields from air pollution and heat stress in the United States. Earth’s Future 9, e2021EF002000 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Zhang, T., Li, T., Yue, X. & Yang, X. Impacts of aerosol pollutant mitigation on lowland rice yields in China. Environ. Res. Lett. 12, 104003 (2017).

    Article  ADS  Google Scholar 

  31. Yi, F., Jiang, F., Zhong, F., Zhou, X. & Ding, A. The impacts of surface ozone pollution on winter wheat productivity in China—an econometric approach. Environ. Pollut. 208, 326–335 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Hong, C. et al. Impacts of ozone and climate change on yields of perennial crops in California. Nat. Food 1, 166–172 (2020).

    Article  CAS  Google Scholar 

  33. Lobell, D. B., Tommaso, S. D. & Burney, J. A. Globally ubiquitous negative effects of nitrogen dioxide on crop growth. Sci. Adv. 8, eabm9909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Da, Y., Xu, Y. & McCarl, B. Effects of surface ozone and climate on historical (1980-2015) crop yields in the United States: implication for mid-21st century projection. Environ. Resour. Econ. 81, 355–378 (2021).

    Article  Google Scholar 

  35. Wu, R. et al. Joint impacts of ozone pollution and climate change on yields of Chinese winter wheat. Atmos. Pollut. Res. 13, 101509 (2022).

    Article  CAS  Google Scholar 

  36. Shanmugapriya, P., Rathika, S., Ramesh, T. & Janaki, P. Applications of remote sensing in agriculture—a review. Int. J. Curr. Microbiol. Appl. Sci. 8, 2270–2283 (2019).

    Article  Google Scholar 

  37. Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).

    Article  ADS  Google Scholar 

  38. Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guan, K. et al. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Glob. Change Biol. 22, 716–726 (2015).

    Article  ADS  Google Scholar 

  40. Li, X. et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Glob. Change Biol. 24, 3990–4008 (2018).

    Article  ADS  Google Scholar 

  41. Mohammed, G. H. et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. He, L. et al. From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys. Res. Lett. 47, e2020GL087474 (2020).

    Article  ADS  Google Scholar 

  43. Pickering, M., Cescatti, A. & Duveiller, G. Sun-induced fluorescence as a proxy for primary productivity across vegetation types and climates. Biogeosciences 19, 4833–4864 (2022).

    Article  ADS  CAS  Google Scholar 

  44. Qiu, R. et al. Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agric. For. Meteorol. 323, 109038 (2022).

    Article  Google Scholar 

  45. Lyapustin, A., Wang, Y., Korkin, S. & Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765 (2018).

    Article  Google Scholar 

  46. Gao et al. Large-scale climate patterns offer preseasonal hints on the co-occurrence of heat wave and O3 pollution in China. Proc. Natl Acad. Sci. USA 120, e2218274120 (2023).

  47. Xu, X., Zhang, C. & Liang, Y. Review of satellite-driven statistical models PM2.5 concentration estimation with comprehensive information. Atmos. Environ. 256, 118302 (2021).

    Article  CAS  Google Scholar 

  48. Mills, G. et al. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos. Environ. 41, 2630–2643 (2007).

    Article  ADS  CAS  Google Scholar 

  49. Feng, Z. et al. A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China. Environ. Pollut. 164, 16–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, W., Feng, Z., Wang, X., Liu, X. & Hu, E. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China. Sci. Total Environ. 599-600, 710–720 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. McGrath, J. M. et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc. Natl Acad. Sci. USA 112, 14390–14395 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yi, F., Feng, J., Wang, Y. & Jiang, F. Influence of surface ozone on crop yield of maize in China. J. Integr. Agric. 19, 578–589 (2020).

    Article  CAS  Google Scholar 

  53. Lobell, D. B. & Burney, J. A. Cleaner air has contributed one-fifth of US maize and soybean yield gains since 1999. Environ. Res. Lett. 16, 074049 (2021).

    Article  ADS  CAS  Google Scholar 

  54. Emmel, C. et al. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Glob. Change Biol. 26, 5164–5177 (2020).

    Article  ADS  Google Scholar 

  55. Liu, X. et al. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).

    Article  PubMed  Google Scholar 

  57. Mills, G. et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Change Biol. 24, 3560–3574 (2018).

    Article  ADS  Google Scholar 

  58. Harmens, H., Hayes, F., Sharps, K., Radbourne, A. & Mills, G. Can reduced irrigation mitigate ozone impacts on an ozone-sensitive African wheat variety? Plants 8, 220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Z., Zhang, X., Liu, L., Cheng, M. & Xu, J. Spatial and seasonal patterns of atmospheric nitrogen deposition in North China. Atmos. Ocean. Sci. Lett. 13, 188–194 (2019).

    Article  CAS  Google Scholar 

  60. Pleijel, H., Danielsson, H. & Broberg, M. C. Benefits of the phytotoxic ozone dose (POD) index in dose-response functions for wheat yield loss. Atmos. Environ. 268, 118797 (2022).

    Article  CAS  Google Scholar 

  61. Gong, C., Yue, X., Liao, H. & Ma, Y. A humidity-based exposure index representing ozone damage effects on vegetation. Environ. Res. Lett. 16, 044030 (2021).

    Article  ADS  CAS  Google Scholar 

  62. Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y. & Feng, Z. Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2. Front. Sustain. Food Syst. 5, 534616 (2021).

    Article  Google Scholar 

  63. Long, S. P., Morgan, P. B. & Ainsworth, E. A. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26, 1317–1328 (2003).

    Article  Google Scholar 

  64. Feng, Z. et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 131, 104966 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Qi, Q., Wang, S., Zhao, H., Kota, S. H. & Zhang, H. Rice yield losses due to O3 pollution in China from 2013 to 2020 based on the WRF-CMAQ model. J. Clean. Prod. 401, 136801 (2023).

    Article  CAS  Google Scholar 

  66. Yue, X. & Unger, N. Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmos. Chem. Phys. 17, 1329–1342 (2017).

    Article  ADS  CAS  Google Scholar 

  67. Xu, J., Dong, X., Zhang, T., Liu, J. & Tao, S. Mitigation of air pollutant impacts on rice yields in China by sector. Environ. Res. Lett. 17, 054037 (2022).

    Article  ADS  Google Scholar 

  68. Zhang, T. et al. Modeling the joint impacts of ozone and aerosols on crop yields in China: an air pollution policy scenario analysis. Atmos. Environ. 247, 118216 (2021).

    Article  CAS  Google Scholar 

  69. Leung, F. et al. CO2 fertilization of crops offsets yield losses due to future surface ozone damage and climate change. Environ. Res. Lett. 17, 074007 (2022).

    Article  ADS  Google Scholar 

  70. Xiong, W. et al. Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environ. Res. Lett. 7, 044014 (2012).

    Article  ADS  Google Scholar 

  71. Field, D. B. L. A. C. B. Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob. Change Biol. 14, 39–45 (2007).

    Google Scholar 

  72. Taylor, C. & Schlenker, W. In Environmental drivers of agricultural productivity growth: CO2 fertilization of US field crops, Working Paper Series No. 29320 (National Bureau of Economic Research, 2021); https://doi.org/10.3386/w29320

  73. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  PubMed  Google Scholar 

  74. Schultz, M. G. et al. Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elem. Sci. Anth. 5, 58 (2017).

    Article  Google Scholar 

  75. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  76. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2010).

    Article  MathSciNet  Google Scholar 

  77. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).

    Article  ADS  Google Scholar 

  79. Hsiang, S. Climate econometrics. Ann. Rev. Resour. Econ. 8, 43–75 (2016).

    Article  ADS  Google Scholar 

  80. Ortiz-Bobea, A. in Handbook of Agricultural Economics Vol. 5 (eds Barrett, C. B. & Just, D. R.) 3981–4073 (Elsevier, 2021); https://doi.org/10.1016/bs.hesagr.2021.10.002

  81. Chen, S., Chen, X. & Xu, J. Impacts of climate change on agriculture: evidence from China. J. Environ. Econ. Manage. 76, 105–124 (2016).

    Article  Google Scholar 

  82. Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, S. & Gong, B. Response and adaptation of agriculture to climate change: evidence from China. J. Dev. Econ. 148, 102557 (2021).

    Article  Google Scholar 

  84. Proctor, J., Rigden, A., Chan, D. & Huybers, P. More accurate specification of water supply shows its importance for global crop production. Nat. Food 3, 753–763 (2022).

    Article  PubMed  Google Scholar 

  85. Heft-Neal, S., Burney, J., Bendavid, E., Voss, K. K. & Burke, M. Dust pollution from the Sahara and African infant mortality. Nat. Sustain. 3, 863–871 (2020).

    Article  Google Scholar 

  86. Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).

    Article  ADS  Google Scholar 

  87. Monteith, J. L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9, 747 (1972).

    Article  Google Scholar 

  88. Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).

    Article  ADS  Google Scholar 

  89. Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 17, 405–422 (2020).

    Article  ADS  CAS  Google Scholar 

  90. Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).

    Article  Google Scholar 

  91. Burke, M., Dykema, J., Lobell, D. B., Miguel, E. & Satyanath, S. Incorporating climate uncertainty into estimates of climate change impacts. Rev. Econ. Stat. 97, 461–471 (2015).

    Article  Google Scholar 

  92. Xu, S. et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (71921003 and 71974092; H.W.) and the Fundamental Research Funds for the Central Universities (14380031, 14380179 and 14380174; H.W.). We thank all the open-data providers and institutions for the data used in our study. We also thank the R package developers, especially the tidyverse (https://www.tidyverse.org/) and rspatial (https://github.com/rspatial/) communities.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and X. Liu conceived and planned the study. X. Li and J.X. provided GOSIF data. M.G. provided ozone data. X. Liu processed the source data. X. Liu, B.C., R.T., Y.L., B.Q., M.G., X. Li, J.X., H.Z.S., X.H., A.R.D., A.D. and H.W. analysed the data and wrote the article.

Corresponding author

Correspondence to Haikun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Figs. 1–34, Tables 1–12 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chu, B., Tang, R. et al. Air quality improvements can strengthen China’s food security. Nat Food 5, 158–170 (2024). https://doi.org/10.1038/s43016-023-00882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00882-y

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene