Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimal climate intervention scenarios for crop production vary by nation

Abstract

Stratospheric aerosol intervention (SAI) is a proposed strategy to reduce the effects of anthropogenic climate change. There are many temperature targets that could be chosen for a SAI implementation, which would regionally modify climatically relevant variables such as surface temperature, precipitation, humidity, total solar radiation and diffuse radiation. In this work, we analyse impacts on national maize, rice, soybean and wheat production by looking at output from 11 different SAI scenarios carried out with a fully coupled Earth system model coupled to a crop model. Higher-latitude nations tend to produce the most calories under unabated climate change, while midlatitude nations maximize calories under moderate SAI implementation and equatorial nations produce the most calories from crops under high levels of SAI. Our results highlight the challenges in defining ‘globally optimal’ SAI strategies, even if such definitions are based on just one metric.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Climate impacts of SAI and climate change scenarios.
Fig. 2: Crop production impacts under SAI scenarios relative to climate change.
Fig. 3: Crop production changes for top producers under SAI relative to climate change.
Fig. 4: Climate change or SAI scenario that produces the most calories for each nation under SSP2-4.5.
Fig. 5: Climate change or SAI scenario that produces the most calories for each nation under SSP5-8.5.
Fig. 6: Climate change or SAI scenario that produces the most calories for each nation under SSP5-3.4-OS.
Fig. 7: Individual climate impacts on crop production under SAI relative to climate change.

Similar content being viewed by others

Data availability

Output from the CESM2(WACCM6) SSP2-4.5 and SSP2-4.5-1.5 °C is freely available at https://doi.org/10.26024/0cs0-ev98. CESM2(WACCM6) output from SSP5-8.5, SSP5-3.4-OS, Geoengineering Model Intercomparison Project G6Solar and G6Sulfur is freely available on Earth System Grid at https://esgf-node.llnl.gov/search/cmip6/. CESM2(WACCM6) output from SSP5-3.4-OS-2.0 °C, SSP5-3.4-OS-1.5 °C and SSP5-8.5-1.5 °C is available at https://doi.org/10.26024/t49k-1016. Coupled and offline CLM5crop postprocessed yield data are available at https://doi.org/10.6084/m9.figshare.24085797.v1. Historical yield observation data were obtained from FAOSTAT at https://www.fao.org/faostat/en/#data.

Code availability

The source code for the CESM(WACCM) model used in this study is freely available at https://www.cesm.ucar.edu/working_groups/Whole-Atmosphere/code-release.html, and the code for CLM5 is available at https://www.cesm.ucar.edu/models/cesm2/land/. Postprocessing and figure generation scripts can be found at https://github.com/bjc204/Clark_etal_NatureFood_2023.

References

  1. Fugile, P. Climate change upsets agriculture. Nat. Clim. Change 11, 293–299 (2021).

    ADS  Google Scholar 

  2. Kummu, M., Heino, M., Taka, M., Varis, O. & Viviroli, D. Climate change risks pushing one-third of global food production outside the safe climatic space. One Earth 4, 720–729 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climatic Change 77, 211–220 (2006).

    Article  ADS  CAS  Google Scholar 

  5. Wigley, T. M. A combined mitigation/geoengineering approach to climate stabilization. Science 314, 452–454 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. National Academies of Sciences, Engineering, and Medicine Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance (National Academies Press, 2021); https://doi.org/10.17226/25762

  7. Robock, A. 20 reasons why geoengineering may be a bad idea. Bull. At. Sci. 64, 14–18 (2008).

    Article  Google Scholar 

  8. Rasch, P. J., Crutzen, P. J. & Coleman, D. B. Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys. Res. Lett. 35, L02809 (2008).

    Article  ADS  Google Scholar 

  9. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  PubMed  Google Scholar 

  10. Farquhar, G., Caemmerer, S. & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis–stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519–538 (1992).

    Article  Google Scholar 

  12. Bala, G., Duffy, P. B. & Taylor, K. E. Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl Acad. Sci. USA 105, 7664–7669 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Proctor, J. et al. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560, 480–483 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Pongratz, J., Lobell, D. B., Cao, L. & Caldeira, K. Crop yields in a geoengineered climate. Nat. Clim. Change 2, 101–105 (2012).

    Article  ADS  CAS  Google Scholar 

  15. Xia, L. et al. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 119, 8695–8711 (2014).

    Article  ADS  Google Scholar 

  16. Zhan, P. et al. Impacts of sulfate geoengineering on rice yield in China: results from a multimodel ensemble. Earth’s Future 7, 395–410 (2019).

    Article  ADS  Google Scholar 

  17. Fan, Y. et al. Solar geoengineering can alleviate climate change pressures on crop yields. Nat. Food 2, 373–381 (2021).

    Article  MathSciNet  PubMed  Google Scholar 

  18. Tilmes, S. et al. Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. Earth Syst. Dynam. 11, 579–601 (2020).

    Article  ADS  Google Scholar 

  19. Richter, J. et al. Assessing responses and impacts of solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations. Geosci. Model Dev. 15, 8221–8243 (2022).

    Article  ADS  CAS  Google Scholar 

  20. MacMartin, D. et al. Scenarios for modeling solar radiation modification. Proc. Natl Acad. Sci. USA 119, e2202230119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tilmes, S. et al. CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bull. Am. Meteorol. Soc. 99, 2361–2371 (2018).

    Article  ADS  Google Scholar 

  22. Dagon, K. & Schrag, D. P. Quantifying the effects of solar geoengineering on vegetation. Climatic Change 153, 235–251 (2019).

    Article  ADS  Google Scholar 

  23. Kravitz, B. et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geosci. Model Dev. 8, 3379–3392 (2015).

    Article  ADS  CAS  Google Scholar 

  24. Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article  ADS  Google Scholar 

  25. Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model Version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).

    Article  ADS  Google Scholar 

  26. Lawrence, D. M. et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article  ADS  Google Scholar 

  27. Fisher, R. et al. Parametric controls on vegetation responses to biogeochemical forcing in the CLM5. J. Adv. Model. Earth Syst. 11, 2879–2895 (2019).

    Article  ADS  Google Scholar 

  28. Dirmeyer, P. A. et al. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).

    Article  ADS  Google Scholar 

  29. Rabin, S. S., Sacks, W. J., Lombardozzi, D. L., Xia, L. & Robock, A. Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5). Preprint at Geoscientific Model Development https://doi.org/10.5194/gmd-2023-66 (2023).

  30. Food Balance Spreadsheets (FAO, accessed 20 July 2022); https://www.fao.org/faostat/en/#data/FBS

  31. Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    Article  ADS  Google Scholar 

  32. Proctor, J. Atmospheric opacity has a nonlinear effect on global crop yields. Nat. Food 2, 166–173 (2021).

    Article  PubMed  Google Scholar 

  33. Reynolds, J. L. Solar geoengineering to reduce climate change: a review of governance proposals. Proc. R. Soc. A https://doi.org/10.1098/rspa.2019.0255 (2019).

  34. Svoboda, T. & Irvine, P. Ethical and technical challenges in compensating for harm due to solar radiation management geoengineering. Ethics Policy Environ. 17, 157–174 (2014).

    Article  Google Scholar 

  35. Bunzl, M. Geoengineering harms and compensation. Stanf. J. Law Sci. Policy 4, 69–75 (2019).

    Google Scholar 

  36. Gettelman, A. et al. The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos. 124, 12380–12403 (2019).

    Article  ADS  Google Scholar 

  37. Liu, X. et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev. 9, 505–522 (2016).

    Article  ADS  CAS  Google Scholar 

  38. O’Neill et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  ADS  Google Scholar 

  39. United Nations Framework Convention on Climate Change (UN General Assembly, 2015); https://unfccc.int/sites/default/files/english_paris_agreement.pdf

  40. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  41. Kravitz, B. et al. First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives. J. Geophys. Res. Atmos. 122, 12,616–12,634 (2017).

    Article  CAS  Google Scholar 

  42. Davis, N. A. et al. Climate, variability, and climate sensitivity of ‘Middle Atmosphere’ chemistry configurations of the Community Earth System Model Version 2, Whole Atmosphere Community Climate Model Version 6 (CESM2(WACCM6)). Preprint at Authorea https://doi.org/10.22541/essoar.167117634.40175082/v1 (2022).

  43. Visioni, D. et al. Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmos. Chem. Phys. 21, 10039–10063 (2021).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant nos. AGS-2017113 and ENG-2028541 awarded to A.R. and L.X. and by a gift from SilverLining’s Safe Climate Research Initiative. This material is based on work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under cooperative agreement no. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory at the National Center for Atmospheric Research. We thank H. Stephens for developing the yield conversion script.

Author information

Authors and Affiliations

Authors

Contributions

B.C., L.X. and A.R. designed the study. S.T., J.H.R. and D.V. conducted the climate model simulations. B.C., S.S.R. and L.X. conducted the offline crop model simulations. B.C. analysed the data with contributions from all the authors. B.C., L.X. and A.R. wrote the first draft, and all authors contributed to editing and revising the paper.

Corresponding author

Correspondence to Brendan Clark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, B., Xia, L., Robock, A. et al. Optimal climate intervention scenarios for crop production vary by nation. Nat Food 4, 902–911 (2023). https://doi.org/10.1038/s43016-023-00853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00853-3

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene