Strategies to improve wheat for human health


Despite their economic importance and growing demand, concerns are emerging around wheat-based foods and human health. Most wheat-based foods are made from refined white flour rather than wholemeal flour, and the overconsumption of these products may contribute to the increasing global prevalence of chronic diseases, particularly type 2 diabetes and obesity. Here, we review how the amount, composition and interactions of starch and cell wall polysaccharides, the major carbohydrate components in refined wheat products, impact human health. We discuss strategies and challenges to manipulate these components for improved diet and health using newly developed wheat genomics tools and resources. Commercial foods developed from these novel approaches must be produced without adverse effects on cost, consumer acceptability and processing properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic showing the origin of white flour produced by milling wheat grain.
Fig. 2: Structures of the main polysaccharides present in white flour.
Fig. 3: Predicted timeline for the development of an elite cultivar with increased resistant starch using TILLING versus gene editing.
Fig. 4: Strategies to manipulate the amounts, structures and properties of grain polysaccharides and expected health outcomes.


  1. 1.

    FAOSTAT Crops (Food and Agriculture Organization of the United Nations);

  2. 2.

    Mattei, J. et al. Reducing the global burden of type 2 diabetes by improving the quality of staple foods: the Global Nutrition and Epidemiologic Transition Initiative. Glob. Health 11, 23 (2015).

    Google Scholar 

  3. 3.

    FAOSTAT New Food Balances (Food and Agriculture Organization of the United Nations);

  4. 4.

    Shewry, P. R. & Hey, S. The contribution of wheat to human diet and health. Food Energy Secur. 4, 178–202 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Andersson, A. A. M. et al. Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chem. 136, 1243–1248 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Brouns, F. J. P. H., van Buul, V. J. & Shewry, P. R. Does wheat make us fat and sick? J. Cereal Sci. 58, 209–215 (2013).

    Google Scholar 

  7. 7.

    Davis, W. R. Wheat Belly: Lose the Wheat, Lose the Weight, and Find Your Path Back to Health (Rodale Books, 2011).

  8. 8.

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to resistant starch and reduction of post-prandial glycaemic responses (ID 681), “digestive health benefits” (ID 682) and “favours a normal colon metabolism” (ID 783) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 9, 2024 (2011).

    Google Scholar 

  9. 9.

    Aune, D. et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 353, i2716 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Brownlee, I. A., Durukan, E., Masset, G., Hopkins, S. & Tee, E.-S. An overview of whole grain regulations, recommendations and research across Southeast Asia. Nutrients 10, 752 (2018).

    PubMed Central  Google Scholar 

  11. 11.

    Seal, C. J. & Brownlee, I. A. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc. Nutr. Soc. 74, 313–319 (2015).

    PubMed  Google Scholar 

  12. 12.

    Shao, Y. et al. Reduction of falling number in soft white spring wheat caused by an increased proportion of spherical B-type starch granules. Food Chem. 284, 140–148 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Park, S.-H., Wilson, J. D. & Seabourn, B. W. Size granule distribution of hard red winter and hard red spring wheat: its effects on mixing and breadmaking quality. J. Cereal Sci. 49, 98–105 (2009).

    CAS  Google Scholar 

  14. 14.

    Chia, T. et al. A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. J. Exp. Bot. 71, 105–115 (2020).

    PubMed  Google Scholar 

  15. 15.

    The definition of dietary fiber. Cereal Foods World 46, 112–126 (2001);

  16. 16.

    Haska, L., Nyman, M. & Andersson, R. Distribution and characterisation of fructan in wheat milling fractions. J. Cereal Sci. 48, 768–774 (2008).

    CAS  Google Scholar 

  17. 17.

    Loosveld, A.-M. A. et al. Structural variation and levels of water-extractable arabinogalactan-peptide in European wheat flours. Cereal Chem. 75, 815–819 (1998).

    CAS  Google Scholar 

  18. 18.

    Murphy, M. M., Douglass, J. S. & Birkett, A. Resistant starch intakes in the United States. J. Am. Diet. Assoc. 108, 67–78 (2008).

    PubMed  Google Scholar 

  19. 19.

    Corrado, M. et al. Effect of semolina pudding prepared from starch branching enzyme IIa and b mutant wheat on glycaemic response in vitro and in vivo: a randomised controlled pilot study. Food Funct. 11, 617–627 (2020).

    CAS  PubMed  Google Scholar 

  20. 20.

    Edwards, C. H. et al. Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. Am. J. Clin. Nutr. 102, 791–800 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ahuja, G., Jaiswal, S. & Chibbar, R. N. in Resistant Starch 1–22 (John Wiley and Sons, 2013).

  22. 22.

    Franco, C. M. L., do Rio Preto, S. J. & Ciacco, C. F. Factors that affect the enzymatic degradation of natural starch granules: effect of the size of the granules. Starch 11, 422–426 (1992).

    Google Scholar 

  23. 23.

    Bathgate, G. N., Clapperton, J. F. & Palmer, G. H. The significance of small starch granules. In Proc. Eur. Brew. Conv. Congr. Salzburg 183–186 (Elsevier, 1973).

  24. 24.

    Lovegrove, A. et al. Role of polysaccharides in food, digestion and health. Crit. Rev. Food Sci. Nutr. 57, 237–253 (2015).

    PubMed Central  Google Scholar 

  25. 25.

    Aguilera, J. M. The food matrix: implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 59, 3612–3629 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Chen, C. et al. Therapeutic effects of soluble fibre consumption on type 2 diabetes mellitus. Exp. Ther. Med. 12, 1232–1242 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Botticella, E. et al. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotech. J. 16, 1723–1734 (2018).

    CAS  Google Scholar 

  28. 28.

    Gouseti, O. et al. Exploring the role of cereal dietary fibre in digestion. J. Agric. Food Chem. 67, 8419–8424 (2019).

    CAS  PubMed  Google Scholar 

  29. 29.

    International Wheat Genetics Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Google Scholar 

  30. 30.

    10+ Wheat Genomes Project The Wheat ‘Pan Genome’ (Wheat Initiative, 2011);

  31. 31.

    Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA 114, E913–E921 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Ramirez-Gonzalez, R. H., Uauy, C. & Caccamo, M. PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31, 2038–2039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ramirez-Gonzalez, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).

    PubMed  Google Scholar 

  34. 34.

    Borrill, P., Ramirez-Gonzalez, R. & Uauy, C. expVIP: a customizable RNA-seq data analysis and visualisation platform. Plant Physiol. 170, 2172–2186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Borrill, P., Harrington, S. A. & Uauy, C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. Plant J. 97, 56–72 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Harrington, S. A., Backhaus, A. E., Singh, A., Hassani-Pak, K. & Uauy, C. The wheat GENIE3 network provides biologically-relevant information in polyploid wheat. G3 Genes Genomes Genetics (2020).

  37. 37.

    Arora, A. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    CAS  PubMed  Google Scholar 

  38. 38.

    Wingen, L. et al. Wheat landrace genome diversity. Genetics 205, 1657–1676 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yamamori, M., Kato, M., Yui, M. & Kawasaki, M. Resistant starch and starch pasting properties of a starch synthase IIa-deficient wheat with apparent high amylose. Aust. J. Agric. Res. 57, 531–535 (2006).

    CAS  Google Scholar 

  41. 41.

    Hazard, B. et al. Mutations in durum wheat SBEII genes affect grain yield components, quality, and fermentation responses in rats. Crop Sci. 55, 2813–2825 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Regina, A. et al. A genetic strategy generating wheat with very high amylose content. Plant Biotech. J. 13, 1276–1286 (2015).

    CAS  Google Scholar 

  43. 43.

    Schönhofen, A., Zhang, X. & Dubcovsky, J. Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality. J. Cereal Sci. 75, 165–174 (2017).

    Google Scholar 

  44. 44.

    Borrill, P., Adamski, N. & Uauy, C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 208, 1008–1022 (2015).

    PubMed  Google Scholar 

  45. 45.

    Chia, T. et al. Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content. J. Exp. Bot. 68, 5497–5509 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Howard, T. et al. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot. 62, 2217–2228 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Toole, G. A. et al. Spectroscopic analysis of diversity of arabinoxylan structures in cell walls of wheat cultivars (Triticum aestivum) in the HEALTHGRAIN diversity collection. J. Agric. Food Chem. 59, 7075–7082 (2011).

    CAS  PubMed  Google Scholar 

  48. 48.

    Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. of Plant Biol. 61, 263–289 (2010).

    CAS  Google Scholar 

  49. 49.

    Ward, J. et al. The HEALTHGRAIN cereal diversity screen: concept, results and prospects. J. Agric. Food Chem. 56, 9699–9709 (2008).

    CAS  PubMed  Google Scholar 

  50. 50.

    Shewry, P. R. et al. Improving wheat as a source of dietary fibre for human health. Proc. Nutr. Soc. Summer Meeting 74, E87 (Cambridge University Press, 2015).

  51. 51.

    Lovegrove, A. et al. Identification of a major QTL and associated marker for high arabinoxylan fibre in white wheat flour. PLoS ONE 15, e0227826 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lockyer, S. & Nugent, A. P. Health effects of resistant starch. Nutr. Bull. 42, 10–41 (2017).

    Google Scholar 

  53. 53.

    Mishra, A., Singh, A., Sharma, M., Kumar, P. & Roy, J. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC Plant Biol. 16, 217 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references


Rothamsted Research, the John Innes Centre (JIC), NIAB and Quadram Institute Bioscience (QIB) receive grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK. The work at Rothamsted, the JIC and NIAB forms part of the Designing Future Wheat strategic programme (BB/P016855/1) and Molecules from Nature programme (BBS/E/J/000PR9799) and the work at QIB part of the Food Innovation and Health strategic programme (BB/R012512/1) and its constituent projects BBS/E/F/000PR10343 (Theme 1, Food Innovation) and BBS/E/F/000PR10345 (Theme 2, Digestion in the Upper GI Tract).

Author information




All authors contributed to writing the article.

Corresponding author

Correspondence to Peter Shewry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazard, B., Trafford, K., Lovegrove, A. et al. Strategies to improve wheat for human health. Nat Food 1, 475–480 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing