Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030


With the global supply of forage fish at a plateau, fed aquaculture must continue to reduce dependence on fishmeal and oil in feeds to ensure sustainable sector growth. The use of novel aquaculture feed ingredients is growing, but their contributions to scalable and sustainable aquafeed solutions are unclear. Here, we show that global adoption of novel aquafeeds could substantially reduce aquaculture’s forage fish demand by 2030, maintaining feed efficiencies and omega-3 fatty acid profiles. We combine production data, scenario modelling and a decade of experimental data on forage fish replacement using microalgae, macroalgae, bacteria, yeast and insects to illustrate how reducing future fish oil demand, particularly in high-value species such as salmonids, will be key for the sustainability of fed aquaculture. However, considerable uncertainties remain surrounding novel feed efficacy across different life-cycle stages and taxa, and various social, environmental, economic and regulatory challenges will dictate their widespread use. Yet, we demonstrate how even limited adoption of novel feeds could aid sustainable aquaculture growth, which will become increasingly important for food security.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Historical supply, feed use and projected aquaculture demand for forage fish across 2030 growth scenarios.
Fig. 2: Relative change to feed conversion ratios with fishmeal replacement for different animal groups across novel feed types.
Fig. 3: Relative change to the omega-3 index in species tissues following fish oil replacement.
Fig. 4: Simulated global forage fish savings across animal groups with the incorporation of novel feed ingredients under different aquaculture growth scenarios to 2030.

Data availability

Aquaculture production data are publicly available and were accessed through FishStatJ55. All data products used for analyses in this study are publicly available through a GitHub repository ( All data that support this study are available from the corresponding author on request.

Code availability

All custom code produced during the analyses were generated using R statistical software version 3.4.3 and are publicly available through a GitHub repository (


  1. 1.

    The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals (FAO, 2018).

  2. 2.

    Turchini, G. M., Trushenski, J. T. & Glencross, B. D. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 81, 13–39 (2019).

    Article  Google Scholar 

  3. 3.

    Froehlich, H., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).

    Article  Google Scholar 

  4. 4.

    Shepherd, C. J. & Jackson, A. J. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83, 1046–1066 (2013).

    CAS  PubMed  Google Scholar 

  5. 5.

    Naylor, R. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6.

    Naylor, R. et al. Effect of aquaculture on world fish supplies. Nature 405, 1017–1024 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wijkstrom, U. in Fish as Feed Inputs for Aquaculture: Practices, Sustainability and Implications Fisheries and Aquaculture Technical Paper Vol. 518 (eds Hasan, M. & Halwart, M.) 371–407 (2009).

  8. 8.

    Turchini, G. M., Torstensen, B. E. & Ng, W. K. Fish oil replacement in finfish nutrition. Rev. Aquac. 1, 10–57 (2009).

    Article  Google Scholar 

  9. 9.

    Hasan, M. R. & Halwart, M. Fish as Feed Inputs for Aquaculture: Practices, Sustainability and Implications (FAO, 2009).

  10. 10.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  11. 11.

    Francis, G., Makkar, H. P. S. & Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Hamilton, H. A. et al. Investigating cross-sectoral synergies through integrated aquaculture, fisheries, and agriculture phosphorus assessments: a case study of Norway. J. Ind. Ecol. 20, 867–882 (2015).

    Article  Google Scholar 

  13. 13.

    Kokou, F. & Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 495, 295–310 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Parker, R. Implications of high animal by-product feed inputs in life cycle assessments of farmed Atlantic salmon. Int. J. Life Cycle Assess. 23, 982–994 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Res. Pt II (2020).

  16. 16.

    Saunders, R. A., Hill, S. L., Tarling, G. A. & Murphy, E. J. Myctophid fish (family Myctophidae) are central consumers in the food web of the scotia sea (Southern Ocean). Front. Mar. Sci. 6, 530 (2019).

    Article  Google Scholar 

  17. 17.

    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    Article  Google Scholar 

  18. 18.

    Pelletier, N., Klinger, D. H., Sims, N. A., Yoshioka, J. R. & Kittinger, J. N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 52, 5532–5544 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  19. 19.

    Fish to 2030: Prospects for Fisheries and Aquaculture (World Bank, 2013).

  20. 20.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  21. 21.

    Smith, A. D. M. et al. Impacts of fishing low-trophic level species on marine ecosystems. Science 333, 1147–1150 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  22. 22.

    Shah, M. R. et al. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 30, 197–213 (2018).

    Article  Google Scholar 

  23. 23.

    Mahan, K. M. et al. Production of single cell protein from agro-waste using Rhodococcus opacus. J. Ind. Microbiol. Biotechnol. 45, 795–801 (2018).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Rosas, V. T., Poersch, H., Romano, L. A. & Tesser, M. B. Feasibility of the use of Spirulina in aquaculture diets. Rev. Aquac. 11, 1367–1378 (2018).

    Article  Google Scholar 

  25. 25.

    Øverland, M. & Skrede, A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J. Sci. Food Agric. 97, 733–742 (2017).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 563–583 (2013).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Henry, M., Gasco, L., Piccolo, G. & Fountoulaki, E. Review on the use of insects in the diet of farmed fish: past and future. Anim. Feed Sci. Technol. 203, 1–22 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Sealey, W. M. et al. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquac. Soc. 42, 34–45 (2011).

    Article  Google Scholar 

  29. 29.

    Lundy, M. E. & Parrella, M. P. Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE 10, e0118785 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Harris, W. S. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55, 217–223 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Von Schacky, C. Omega-3 index and cardiovascular health. Nutrients 6, 799–814 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Salmon novelty in France: Supermarché Match launches salmon fed with Veramaris’ innovative natural marine algal oil. Veramaris (6 June 2019).

  34. 34.

    Protix presents the Friendly SalmonTM, the first insect-fed salmon in the world. Protix (6 February 2018).

  35. 35.

    Vigani, M. et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci. Technol. 42, 81–92 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Sprague, M., Betancor, M. B. & Tocher, D. R. Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol. Lett. 39, 1599–1609 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Taelman, S. E. et al. Bioresource technology the environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective. Bioresour. Technol. 150, 513–522 (2013).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Sustainability Report: Global 2017 (Skretting, 2017).

  39. 39.

    Tacon, A. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1–10 (2015).

    Article  Google Scholar 

  40. 40.

    Llagostera, P. F., Kallas, Z., Reig, L. & Amores de Gea, D. The use of insect meal as a sustainable feeding alternative in aquaculture: current situation, Spanish consumers’ perceptions and willingness to pay. J. Clean. Prod. 229, 10–21 (2019).

    Article  Google Scholar 

  41. 41.

    Essington, T. E. et al. Fishing amplifies forage fish population collapses. Proc. Natl Acad. Sci. USA 112, 6648–6652 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  42. 42.

    Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  43. 43.

    Chiu, A. et al. Feed and fishmeal use in the production of carp and tilapia in China. Aquaculture 414–415, 127–134 (2013).

    Article  Google Scholar 

  44. 44.

    Couture, J. L. et al. Environmental benefits of novel nonhuman food inputs to salmon feeds. Environ. Sci. Technol. 53, 1967–1975 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45.

    Oonincx, D. G. A. B. et al. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5, e14445 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Oonincx, D. G. A. B. & de Boer, I. J. M. Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS ONE 7, e51145 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  48. 48.

    Pahlow, M., van Oel, P. R., Mekonnen, M. M. & Hoekstra, A. Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 536, 847–857 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  49. 49.

    Pickering, C. & Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 33, 534–548 (2014).

    Article  Google Scholar 

  50. 50.

    Føre, M. et al. Review precision fish farming: a new framework to improve production in aquaculture. Biosyst. Eng. 173, 176–193 (2018).

    Article  Google Scholar 

  51. 51.

    Alhazzaa, R., Nichols, P. D. & Carter, C. G. Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Rev. Aquac. 11, 1195–1218 (2018).

    Article  Google Scholar 

  52. 52.

    Harris, W. S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87, 1997S–2002S (2008).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Harris, W. S. & von Schacky, C. The omega-3 index: a new risk factor for death from coronary heart disease? Prev. Med. 39, 212–220 (2004).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Berk, M. sme: Smoothing-splines mixed-effects models. R package v.1.0.2 (rdrr, 2018).

  55. 55.

    FishStatJ (FAO, 2019).

  56. 56.

    FAOSTAT (FAO, 2019);

Download references


The authors acknowledge funding and intellectual support from the Centre for Marine Socioecology, University of Tasmania and the Food System Impacts and Sustainability Working Group at the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California, Santa Barbara. R.S.C. acknowledges funding from the CSIRO–UTAS Quantitative Marine Science Program and Australian Training Program. H.E.F. and B.S.H. acknowledge funding from the Zegar Family Foundation and, on behalf of M.M., the IAEA is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories.

Author information




R.S.C. and H.E.F. designed the study. R.S.C. conducted the analysis and wrote the initial draft. J.L.B., H.E.F., B.S.H. and M.M. contributed to methodological refinements and conceptual considerations. All authors contributed to completion of the manuscript through comments and edits of the text and figures.

Corresponding author

Correspondence to Richard S. Cottrell.

Ethics declarations

Competing interests

H.E.F. is a scientific advisor on the Aquaculture Stewardship Council Technical Advisory Group.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cottrell, R.S., Blanchard, J.L., Halpern, B.S. et al. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat Food 1, 301–308 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing