Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems


In natural ecosystems, positive effects of plant diversity on ecosystem functioning have been widely observed, yet whether this is true in cropping systems remains unclear. Here we assessed the impact of crop diversification on soil microbial diversity, soil multifunctionality (SMF) and crop yields in 155 cereal fields across a 3,000 km north–south European gradient. Overall, crop diversity showed a relatively minor effect on soil microbial diversity, SMF and yields. In contrast, the proportion of time with crop cover (including cash crops, cover crops or forage leys) during the past ten-year crop rotation had a much stronger impact. This suggests that increasing crop cover can enhance both yields and soil functioning, while also providing habitat for soil microorganisms. We found that SMF did not positively contribute to crop yields, highlighting that care must be taken to balance the provision of food with environmentally beneficial functions and services, since they do not always go hand in hand.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crop covers and diversity types commonly used in temperate cropping systems.
Fig. 2: Crop species richness by country and crop type.
Fig. 3: Distribution of crop cover in each country over a ten-year crop rotation.
Fig. 4: Relationship between crop diversity and crop cover across our sampling network.
Fig. 5: The impact of agricultural management practices on bacterial diversity, crop yield and SMF.
Fig. 6: Structural equation model showing the effects of environmental and anthropogenic management factors on soil microbial diversity, SMF and crop yield.

Data availability

The data that support the findings of this study are available here:

Code availability

The code used to analyse the data is available here:


  1. 1.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. Global food demand and the sustainable intensitication of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. 2.

    Bommarco, R., Kleijn, D. & Potts, S. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    PubMed  Article  Google Scholar 

  3. 3.

    Poppy, G. et al. Food security in a perfect storm: using the ecosystem services framework to increase understanding. Phil. Trans. R. Soc. B 369, 20120288 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    PubMed  Article  Google Scholar 

  5. 5.

    Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, 908 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wall, D., Nielsen, U. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  8. 8.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Bardgett, R. & van der Putten, W. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    van der Heijden, M., Bardgett, R. & van Straalen, N. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    Article  Google Scholar 

  11. 11.

    Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64, 269–285 (2007).

    Article  Google Scholar 

  12. 12.

    Wagg, C., Bender, F., Widmer, F. & van der Heijden, M. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci USA 111, 5266–5270 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Tautges, N., Sullivan, T., Reardon, C. & Burke, I. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production. Appl. Soil Ecol. 108, 258–268 (2016).

    Article  Google Scholar 

  15. 15.

    Degani, E. et al. Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric. Ecosyst. Environ. 285, 106625 (2019).

    Article  Google Scholar 

  16. 16.

    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. H. V. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Hooper, D. et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience 50, 1049–1061 (2000).

    Article  Google Scholar 

  18. 18.

    Venter, Z., Jacobs, K. & Hawkins, H. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).

    Article  Google Scholar 

  19. 19.

    Kim, N., Zabaloy, M., Guan, K. & Villamil, M. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Bardgett, R., Wardle, D. Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).

  21. 21.

    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustainable Dev. 36, 36–48 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    Bacq-Labreuil, A., Crawford, J., Mooney, S., Neal, A. & Ritz, K. Cover crops species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 7473 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Peralta, A., Sun, Y., McDaniel, M. & Lennon, J. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).

    Article  Google Scholar 

  24. 24.

    Glossary of Agriculture Definitions (United States Department of Agriculture National Agriculture Library, 2020);

  25. 25.

    de Graaff, M., Hornslein, N., Throop, H., Kardol, P. & van Diepen Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv. Agron. 155, 1–44 (2019).

    Article  Google Scholar 

  26. 26.

    Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. & Grace, P. Conservation agriculture and ecosystem services: an overview. Agric. Ecosyst. Environ. 187, 87–105 (2014).

    Article  Google Scholar 

  27. 27.

    Mudgal, S., et al. Environmental Impacts of Different Crop Rotations in the European Union (European Commission (DG Env), in association with Bio Intelligence Services, Warsaw University of Life Sciences, INRAE, Technological Institute of Agriculture and Biology and the University of Milan, 2010).

  28. 28.

    Fageria, N., Baligar, V. & Bailey, B. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 36, 2733–2757 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Bianchi, F., Mikos, V., Brussaard, L., Delbaere, B. & Pulleman, M. Opportunities and limitations for functional agrobiodiversity in the European context. Environ. Sci. Policy 27, 223–231 (2013).

    Article  Google Scholar 

  30. 30.

    Direktzahlungen (Bundesamt für Landwirtschaft, 19 February 2020);

  31. 31.

    Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Yao, H., Jiao, X. & Wu, F. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil 284, 195–203 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Tiemann, L., Grandy, A., Atkinson, E., Marin-Spiotta, E. & McDaniel, M. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Meyer, S. et al. Biodiversity-multifunctionality relationships depend on identity and number of measured functions. Nat. Ecol. Evol. 2, 44–49 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Zhou, X., Yu, G. & Yu, F. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur. J. Soil Biol. 47, 279–287 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Li, N. et al. Intercropping with potato–onion enhanced the soil microbial diversity of tomato. Microorganisms 8, 834 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  37. 37.

    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).

    Google Scholar 

  38. 38.

    Schipanski, M. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).

    Article  Google Scholar 

  39. 39.

    Albizua, A., Williams, A., Hedlund, K. & Pascual, U. Crop rotations including ley and manure can promote ecosystem services in conventional farming systems. Appl. Soil Ecol. 95, 54–61 (2015).

    Article  Google Scholar 

  40. 40.

    Peltonen-Sainio, P., Rajala, A., Känkãnen, H. & Hakala, K. Improving farming systems in northern Europe. Appl. Genet. Improv. Agron. 2, 65–91 (2015).

    Google Scholar 

  41. 41.

    Lu, Y., Watkins, K., Teasdale, J. & Abdul-Baki, A. Cover crops in sustainable food production. Food Rev. Int. 16, 121–157 (2000).

    Article  Google Scholar 

  42. 42.

    Kaye, J. & Quemada, M. Using cover crops to mitigate and adapt to climate change: a review. Agron. Sustain. Dev. 37, 4 (2017).

    Article  Google Scholar 

  43. 43.

    Unger, P. & Vigil, M. Cover crop effects on soil water relationships. J. Soil Water Conserv. 53, 200–207 (1998).

    Google Scholar 

  44. 44.

    Bünemann, E. et al. Soil quality —a review. Soil Biol. Biochem. 120, 105–125 (2018).

    Article  CAS  Google Scholar 

  45. 45.

    Maestre, F. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Brady, N. & Weil, R. The Nature and Properties of Soils 15th edn (Pearson Education, 2016).

  47. 47.

    Carson, J., Campbell, L., Rooney, D., Clipson, N. & Gleeson, D. Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbial Ecol 67, 381–388 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Allison, S. & Martiny, J. Resistance, resilence, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  49. 49.

    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2003).

    Article  Google Scholar 

  50. 50.

    McDaniel, M., Tiemann, L. & Grandy, A. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Jousset, A., Lara, E., Wall, L. G. & Valverde, C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl. Environ. Microbiol. 72, 7083–7090 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    George, P. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 10, 1107 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Jiao, S., Xu, Y., Zhang, J. & Lu, Y. Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7, 15 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Bowles, T. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Article  Google Scholar 

  57. 57.

    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Agric. Adv. 6, esaba 1715 (2020).

    Google Scholar 

  58. 58.

    Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 28, 57–64 (2008).

    Article  Google Scholar 

  59. 59.

    Griffiths, B., Faber, J. & Bloem, J. Applying soil health indicators to encourage sustainable soil use: the transition from scientific study to practical application. Sustainability 10, 3021 (2018).

    Article  Google Scholar 

  60. 60.

    Wood, S. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2070–2085 (2016).

    Article  Google Scholar 

  61. 61.

    Oldfield, E., Bradford, M. & Wood, S. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).

    CAS  Article  Google Scholar 

  62. 62.

    Giller, K. et al. Agricultural intensification, soil biodiversity and agroecosystem function. Appl. Soil Ecol. 6, 3–16 (1997).

    Article  Google Scholar 

  63. 63.

    Six, J., Elliott, E. T., Paustian, K. & Doran, J. W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367–1377 (1998).

    ADS  CAS  Article  Google Scholar 

  64. 64.

    FAL, FAW, RAC. Referenzmethoden der Eidg. landwirtschaftlichen Forschungsanstalten. 1. Bodenuntersuchung zur Düngeberatung (Zürich-Reckenholz, 1996).

  65. 65.

    Bell, C. W., et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).

  66. 66.

    Pell, M., Stenberg, B., Stenström, J. & Torstensson, L. Potential denitrification activity assay in soil - with or without chloramphenicol? Soil Biol. Biochem. 28, 393–398 (2002).

    Article  Google Scholar 

  67. 67.

    Berry, D., Ben Mahfoudh, K., Wagner, M. & Loy, A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Gardes, M., White, T., Fortin, A., Bruns, T. & Taylor, J. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J Bot. 69, 180–190 (1991).

    CAS  Article  Google Scholar 

  69. 69.

    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrihiza and rusts. Mol. Ecol. 2, 113–118 (1993).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Fiore-Donno, A. M. et al. New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Mol. Ecol. Resour. 8, 229–239 (2018).

    Article  CAS  Google Scholar 

  71. 71.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018);

  72. 72.

    Oksanen, J., et al. vegan: Community Ecology Package, 2.5-2 (2018).

  73. 73.

    FAO STAT. Crops (Food and Agriculture Organization of the United Nations, 2018);

  74. 74.

    Keel, S. et al. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agric. Ecosyst. Environ. 286, 106654 (2019).

    CAS  Article  Google Scholar 

  75. 75.

    Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  76. 76.

    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

Download references


We thank all the farmers and farm managers for allowing us to sample their fields and for completing our detailed questionnaires. We also thank A. Held, A. Bonvicini, S. Müller, S. Zhao, V. Somerville, A. Brugger, O. Scholz, D. Bugmann, R. Heiz, B. Seitz and M. Roser for help with both field work and laboratory analyses. The Digging Deeper project was funded through the 2015–2016 BiodivERsA COg call for research proposals, with the national funders Swiss National Science Foundation (grant 31BD30-172466), Deutsche Forschungsgemeinschaft (317895346), Swedish Research Council Formas contract 2016-0194), Ministerio de Economía y Competitividad (Digging_Deeper, reference PCIN-2016-028) and Agence Nationale de la Recherche (ANR, France, grant ANR-16-EBI3-0004-01).

Author information




M.G.A.v.d.H., M.C.R., S.H., F.T.M. and L.P. designed the study and obtained research funding. G.G., A.E., S.B., F.D., P.G-P., D.S.P., C.H., S.R., A. Spor and A. Saghai contributed to data collection and analysis. G.G. and C.W. contributed to data analysis and interpretation. G.G. drafted the manuscript, with significant contributions to the writing from all coauthors. All authors commented on and approved the final manuscript.

Corresponding author

Correspondence to Marcel G. A. van der Heijden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks H. Kahiluoto, T. Bowles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–3, methods and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garland, G., Edlinger, A., Banerjee, S. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat Food 2, 28–37 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing