Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Futile lipid cycling: from biochemistry to physiology

Abstract

In the healthy state, the fat stored in our body isn’t just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the ‘futile lipid cycle’ or the glyceride/FA cycle. Contrary to the notion that it’s a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multifaceted regulation of the glyceride/FA cycle.
Fig. 2: Spatial diversity of the glyceride/FA cycle.
Fig. 3: A model of stochastic fate determination of FAs.
Fig. 4: Putative functions of the glyceride/FA cycle.
Fig. 5: Pharmacological modulation of futile lipid cycle and its implications in systemic health.

Similar content being viewed by others

References

  1. Brownstein, A. J., Veliova, M., Acin-Perez, R., Liesa, M. & Shirihai, O. S. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev. Endocr. Metab. Disord. 23, 121–131 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Greenhill, C. Unravelling the molecular basis of futile creatine cycling. Nat. Rev. Endocrinol. 17, 381–381 (2021).

    Article  PubMed  Google Scholar 

  3. Katz, J. & Rognstad, R. Futile cycling in glucose metabolism. Trends Biochem. Sci. 3, 171–174 (1978).

    Article  CAS  Google Scholar 

  4. Sharma, A. K. & Wolfrum, C. Lipid cycling isn’t all futile. Nat. Metab. 5, 540–541 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Prentki, M. & Madiraju, S. R. M. Glycerolipid metabolism and signaling in health and disease. Endocr. Rev. 29, 647–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Prentki, M. & Madiraju, S. R. M. Glycerolipid/freefatty acid cycle and islet β-cell function in health, obesity and diabetes. Mol. Cell. Endocrinol. 353, 88–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023). In this paper, the authors used an advanced mass-spectrometry tracing approach to quantify the rate of futile lipid cycling in 3T3-L1 adipocytes and calculated the half-life of the TG turnover.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Zechner, R. et al. FAT SIGNALS - lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15, 279–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harayama, T. & Antonny, B. Beyond fluidity: the role of lipid unsaturation in membrane function. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a041409 (2023).

  11. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lynes, M. D., Kodani, S. D. & Tseng, Y.-H. Lipokines and thermogenesis. Endocrinology 160, 2314–2325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Resh, M. D. Chapter 13 - Lipid modification of proteins. In Biochemistry of Lipids, Lipoproteins and Membranes (Sixth Edition) (eds. Ridgway, N. D. & McLeod, R. S.) 391–414 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63438-2.00013-4

  15. Resh, M. D. Covalent lipid modifications of proteins. Curr. Biol. 23, R431–R435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812, 1007–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, H. et al. PPARγ regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Res. 2013, 310948 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cook, H. W. & McMaster, C. R. in New Comprehensive Biochemistry Vol. 36, Ch. 7 pp. 181–204 (Elsevier, 2002).

  19. Jacquemyn, J., Cascalho, A. & Goodchild, R. E. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep. 18, 1905–1921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Newsholme, E. A., Challiss, R. A. J. & Crabtree, B. Substrate cycles: their role in improving sensitivity in metabolic control. Trends Biochem. Sci. 9, 277–280 (1984). In this classic review, pioneering authors discussed how substrate cycles can improve metabolic sensitivity and improve metabolic control.

    Article  CAS  Google Scholar 

  21. Nye, C., Kim, J., Kalhan, S. C. & Hanson, R. W. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol. Metab. 19, 356–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Vaughan, M. The production and release of glycerol by adipose tissue incubated in vitro. J. Biol. Chem. 237, 3354–3358 (1962). In this pioneering study, Vaughan showed evidence of recycling of FAs and glycerol from adipose tissue explant.

    Article  CAS  PubMed  Google Scholar 

  23. Vaughan, M. & Steinberg, D. Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro. J. Lipid Res. 4, 193–199 (1963). This study revealed how various metabolic hormones affect the rate of lipolysis and FA recycling.

    Article  CAS  PubMed  Google Scholar 

  24. Prusiner, S. & Poe, M. Thermodynamic considerations of mammalian thermogenesis. Nature 220, 235–237 (1968). This is one of the earliest studies that speculated a thermogenic role of the glyceride/FA cycle.

    Article  ADS  PubMed  Google Scholar 

  25. Ball, E. G. & Jungas, R. L. On the action of hormones which accelerate the rate of oxygen consumption and fatty acid release in rat adipose tissue in vitro. Proc. Natl Acad. Sci. USA. 47, 932–941 (1961).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cahill, G. F., Leboeuf, B. & Flinn, R. B. Studies on rat adipose tissue in vitro: VI. effect of epinephrine on glucose metabolism. J. Biol. Chem. 235, 1246–1250 (1960).

    Article  CAS  PubMed  Google Scholar 

  27. Hammond, V. A. & Johnston, D. G. Substrate cycling between triglyceride and fatty acid in human adipocytes. Metabolism 36, 308–313 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Oeckl, J. et al. Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Mol. Metab. 61, 101499 (2022). This study reported that the brown adipocytes from Ucp1 KO mice utilize DGAT1-dependent futile lipid cycling to increase oxygen consumption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veliova, M. et al. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Rep. 21, e49634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edens, N. K., Leibel, R. L. & Hirsch, J. Mechanism of free fatty acid re-esterification in human adipocytes in vitro. J. Lipid Res. 31, 1423–1431 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Elia, M., Zed, C., Neale, G. & Livesey, G. The energy cost of triglyceride-fatty acid recycling in nonobese subjects after an overnight fast and four days of starvation. Metabolism 36, 251–255 (1987). In this insightful human study, the authors estimated that the futile lipid cycle may account for ~2.5% REE in fasted participants.

    Article  CAS  PubMed  Google Scholar 

  32. Reshef, L. et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 278, 30413–30416 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Jensen, M. D., Ekberg, K. & Landau, B. R. Lipid metabolism during fasting. Am. J. Physiol. 281, E789–E793 (2001).

    CAS  Google Scholar 

  34. Klein, S. & Wolfe, R. R. Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer. J. Clin. Invest. 86, 1403–1408 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma, A. K. et al. Basal re-esterification finetunes mitochondrial fatty acid utilization. Mol. Metab. 71, 101701 (2023). This paper showed that in basal conditions, DGAT1 and DGAT2 redundantly re-esterify the majority of the FAs, and a combined inhibition blocks re-esterification and leads to the diversion of FAs to mitochondrial oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chitraju, C. et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 26, 407–418 (2017). This paper demonstrated that on lipolysis stimulation, DGAT1 prominently re-esterifies lipolysis-derived FAs to prevent mitochondrial lipotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, P. & Kajimura, S. The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell Biol. 22, 393–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R. & Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50, 3–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Herzer, S., Meldner, S., Gröne, H. -J. & Nordström, V. Fasting-induced lipolysis and hypothalamic insulin signaling are regulated by neuronal glucosylceramide synthase. Diabetes 64, 3363–3376 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Mottillo, E. P. et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J. Lipid Res. 55, 2276–2286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gyamfi, D., Ofori Awuah, E. & Owusu, S. Chapter 2 - Lpid metabolism: an overview. in The Molecular Nutrition of Fats (ed. Patel, V. B.) 17–32 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-811297-7.00002-0

  42. Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004). This study reported the discovery of ATGL, the key lipolytic enzyme of adipocytes.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Poursharifi, P. et al. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight 5, e140294 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chandramohan, C. et al. Mice lacking triglyceride synthesis enzymes in adipose tissue are resistant to diet-induced obesity. eLife 12, RP88049 (2023). This paper reported that Dgat1/Dgat2 DKO mice show improved metabolic health and may utilize Ucp1 upregulation for thermogenic compensation.

    Article  Google Scholar 

  45. McLelland, G.-L. et al. Identification of an alternative triglyceride biosynthesis pathway. Nature 621, 171–178 (2023). This study identified a terminal FA transferase that synthesises TG independent of DGAT1/DGAT2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilfling, F. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stone, S. J. et al. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem. 284, 5352–5361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuerschner, L., Moessinger, C. & Thiele, C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9, 338–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Poppelreuther, M. et al. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J. Lipid Res. 53, 888–900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson, C. M. & Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med. 34, 516–528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wood, F. C., Leboeuf, B. & Cahill, G. F. Metabolic role of glucose. A source of glyceride-glycerol in controlling the release of fatty acids by adipose tissue. Diabetes 9, 261–263 (1960).

    Article  PubMed  Google Scholar 

  53. Gauthier, M.-S. et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J. Biol. Chem. 283, 16514–16524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muers, M. Futile protein cycle keeps mice thin. Nature https://doi.org/10.1038/news070903-4 (2007).

  55. Brooks, B., Arch, J. R. & Newsholme, E. A. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. FEBS Lett. 146, 327–330 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Shapiro, B., Chowers, I. & Rose, G. Fatty acid uptake and esterification in adipose tissue. Biochim. Biophys. Acta 23, 115–120 (1957).

    Article  CAS  PubMed  Google Scholar 

  57. Irshad, Z., Dimitri, F., Christian, M. & Zammit, V. A. Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes. J. Lipid Res. 58, 15–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Lundgren, P. et al. A subpopulation of lipogenic brown adipocytes drives thermogenic memory. Nat. Metab. 5, 1691–1705 (2023). This study identified a subpopulation of the brown adipocytes that are enriched in lipogenic machinery and may be important to recall and adapt according to previous cold exposure episodes.

    Article  CAS  PubMed  Google Scholar 

  59. Bornstein, M. R. et al. Comprehensive quantification of metabolic flux during acute cold stress in mice. Cell Metab. https://doi.org/10.1016/j.cmet.2023.09.002 (2023). This paper described the metabolite flux in mice following cold exposure and demonstrated significant inter-organ cross-talk required for cold adaptation.

  60. Samoilov, M., Plyasunov, S. & Arkin, A. P. Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc. Natl Acad. Sci. USA 102, 2310–2315 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shahrezaei, V. & Swain, P. S. The stochastic nature of biochemical networks. Curr. Opin. Biotechnol. 19, 369–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Tonn, M. K., Thomas, P., Barahona, M. & Oyarzún, D. A. Stochastic modelling reveals mechanisms of metabolic heterogeneity. Commun. Biol. 2108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives the evolution of symbiotic cooperation. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190602 (2020).

    Article  CAS  Google Scholar 

  64. Martin, W. Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos. Trans. R. Soc. B Biol. Sci. 365, 847–855 (2010).

    Article  CAS  Google Scholar 

  65. Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Faergeman, N. J. & Knudsen, J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J. 323, 1–12 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, L. O., Klett, E. L. & Coleman, R. A. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta 1801, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Yan, S. et al. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J. Gastroenterol. 21, 3492–3498 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38, 100941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, Y. et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers 14, 5896 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huh, J. Y. et al. TANK-binding kinase 1 regulates the localization of Acyl-CoA synthetase ACSL1 to control hepatic fatty acid oxidation. Cell Metab. 32, 1012–1027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ellis, J. M. et al. Adipose Acyl-CoA synthetase-1 directs fatty acids toward β-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, J. & Waugh, M. G. The regulation and functions of ACSL3 and ACSL4 in the liver and hepatocellular carcinoma. Liver Cancer Int. 4, 28–41 (2023).

    Article  CAS  Google Scholar 

  74. Klasson, T. D. et al. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma. Cancer Metab. 10, 14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rohm, M., Zeigerer, A., Machado, J. & Herzig, S. Energy metabolism in cachexia. EMBO Rep. 20, e47258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wolfe, R. R., Herndon, D. N., Jahoor, F., Miyoshi, H. & Wolfe, M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N. Engl. J. Med. 317, 403–408 (1987). This human study reported induction of pronounced futile lipid cycling and glucose cycling after severe burn injury.

    Article  CAS  PubMed  Google Scholar 

  77. Hunt, M. C., Siponen, M. I. & Alexson, S. E. H. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. Biophys. Acta. 1822, 1397–1410 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Tillander, V., Alexson, S. E. H. & Cohen, D. E. Deactivating fatty acids: Acyl-CoA thioesterase-mediated control of lipid metabolism. Trends Endocrinol. Metab. 28, 473–484 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heden, T. D. et al. ACOT1 deficiency attenuates high-fat diet induced fat mass gain by increasing energy expenditure. JCI Insight https://doi.org/10.1172/jci.insight.160987 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Okada, K. et al. Thioesterase superfamily member 1 suppresses cold thermogenesis by limiting the oxidation of lipid droplet-derived fatty acids in brown adipose tissue. Mol. Metab. 5, 340–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Y. et al. Targeted deletion of thioesterase superfamily member 1 promotes energy expenditure and protects against obesity and insulin resistance. Proc. Natl Acad. Sci. USA 109, 5417–5422 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Neess, D., Bek, S., Engelsby, H., Gallego, S. F. & Færgeman, N. J. Long-chain acyl-CoA esters in metabolism and signaling: role of acyl-CoA binding proteins. Prog. Lipid Res. 59, 1–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Udupa, P., Kumar, A., Parit, R. & Ghosh, D. K. Acyl-CoA binding protein regulates nutrient-dependent autophagy. Metabolism 145, 155338 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet Lond. Engl. 1, 785–789 (1963). This study made an early observation of FA toxicity and highlighted the conversion of glucose into FAs, its involvement in TG cycling and its physiological implication.

    Article  CAS  Google Scholar 

  85. Hue, L. & Taegtmeyer, H. The Randle cycle revisited: a new head for an old hat. Am. J. Physiol. 297, E578–E591 (2009).

    CAS  Google Scholar 

  86. May, J. M. Triacylglycerol turnover in large and small rat adipocytes: effects of lipolytic stimulation, glucose, and insulin. J. Lipid Res. 23, 428–436 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Toker, A. The biology and biochemistry of diacylglycerol signalling. EMBO Rep. 6, 310–314 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Itoh, T. et al. Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat. Struct. Mol. Biol. 15, 924–931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liberato, M. V. et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS ONE 7, e36297 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lasar, D. et al. Peroxisome proliferator activated receptor gamma controls mature brown adipocyte inducibility through glycerol kinase. Cell Rep. 22, 760–773 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Eichmann, T. O. et al. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J. Biol. Chem. 287, 41446–41457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guan, H. -P. et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122–1128 (2002). This paper reported that anti-diabetic agents, glitazones, induce glycerol kinase expression in adipocytes thereby enabling a FA re-esterification cycle.

    Article  CAS  PubMed  Google Scholar 

  93. Baggelaar, M. P., Maccarrone, M. & van der Stelt, M. 2-arachidonoylglycerol: a signaling lipid with manifold actions in the brain. Prog. Lipid Res. 71, 1–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017). This paper reported a potent brown adipose tissue-derived lipokine and its implications in systemic health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ortiz, G. U. & de Freitas, E. C. Physical activity and batokines. Am. J. Physiol. https://doi.org/10.1152/ajpendo.00160.2023 (2023).

    Article  Google Scholar 

  96. Fasshauer, M. & Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 36, 461–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Tang, S., Wan, M., Huang, W., Stanton, R. C. & Xu, Y. Maresins: specialized proresolving lipid mediators and their potential role in inflammatory-related diseases. Mediators Inflamm. 2018, 2380319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Reidy, S. P. & Weber, J.-M. Accelerated substrate cycling: a new energy-wasting role for leptin in vivo. Am. J. Physiol. 282, E312–E317 (2002).

    CAS  Google Scholar 

  99. Qiao, L., Kinney, B., Schaack, J. & Shao, J. Adiponectin inhibits lipolysis in mouse adipocytes. Diabetes 60, 1519–1527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Harris, R. B. S. Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta 1842, 414–423 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Han, M. S. et al. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl Acad. Sci. USA 117, 2751–2760 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    Article  PubMed  Google Scholar 

  103. Zhang, H. H., Halbleib, M., Ahmad, F., Manganiello, V. C. & Greenberg, A. S. Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular camp. Diabetes 51, 2929–2935 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Weber, B. Z. C., Arabaci, D. H. & Kir, S. Metabolic reprogramming in adipose tissue during cancer cachexia. Front. Oncol. 12, 848394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kliewer, K. L. et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther. 16, 886–897 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Arner, P. & Langin, D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol. Metab. 25, 255–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Narsale, A. A. & Carson, J. A. Role of IL-6 in cachexia – therapeutic implications. Curr. Opin. Support. Palliat. Care 8, 321–327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Beaudry, J. L. et al. The brown adipose tissue glucagon receptor is functional but not essential for control of energy homeostasis in mice. Mol. Metab. 22, 37–48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Longuet, C. et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359–371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pedersen, C., Bouman, S. D., Porsgaard, T., Rosenkilde, M. M. & Roed, N. K. Dual treatment with a fixed ratio of glucagon and insulin increases the therapeutic window of insulin in diabetic rats. Physiol. Rep. 6, e13657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hägele, F. A. et al. Impact of one-day fasting, ketogenic diet or exogenous ketones on control of energy balance in healthy participants. Clin. Nutr. ESPEN 55, 292–299 (2023).

    Article  PubMed  Google Scholar 

  112. Wolfe, R. R., Klein, S., Carraro, F. & Weber, J. M. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol. 258, E382–E389 (1990).

    CAS  PubMed  Google Scholar 

  113. Arner, P. et al. Adipose lipid turnover and long-term changes in body weight. Nat. Med. 25, 1385–1389 (2019). Findings in this paper suggest a positive impact of lipid turnover in weight homeostasis.

    Article  CAS  PubMed  Google Scholar 

  114. Arner, P., Andersson, D. P., Bäckdahl, J., Dahlman, I. & Rydén, M. Weight gain and impaired glucose metabolism in women are predicted by inefficient subcutaneous fat cell lipolysis. Cell Metab. 28, 45–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011). This paper highlighted the positive association of lipid turnover in glucose homeostasis and body weight regulation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hsieh, C. -W., DeSantis, D. & M, C. Role of triglyceride/fatty acid cycle in development of type 2 diabetes. in Role of the Adipocyte in Development of Type 2 Diabetes (ed. Croniger, C.) (InTech, 2011). https://doi.org/10.5772/24033

  117. Guillou, H., Zadravec, D., Martin, P. G. P. & Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog. Lipid Res. 49, 186–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Los, D. A. & Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666, 142–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Tong, P. et al. Cell membrane dynamics and insulin resistance in non-insulin-dependent diabetes mellitus. Lancet Lond. Engl. 345, 357–358 (1995).

    Article  CAS  Google Scholar 

  120. Pilon, M. Revisiting the membrane-centric view of diabetes. Lipids Health Dis. 15, 167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Perona, J. S. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils. Biochim. Biophys. Acta 1859, 1690–1703 (2017).

    Article  CAS  Google Scholar 

  122. He, M. et al. Inhibiting phosphatidylcholine remodeling in adipose tissue increases insulin sensitivity. Diabetes 72, 1547–1559 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Calzada, E., Onguka, O. & Claypool, S. M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321, 29–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Schütter, M., Giavalisco, P., Brodesser, S. & Graef, M. Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy. Cell 180, 135–149 (2020).

    Article  PubMed  Google Scholar 

  125. Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. von Essen, G. et al. Highly recruited brown adipose tissue does not in itself protect against obesity. Mol. Metab. 76, 101782 (2023). This paper demonstrated that UCP1 expression is not correlated with UCP1 activity; thus, conclusions drawn from expression may need reconsideration.

    Article  Google Scholar 

  127. Qian, H. & Beard, D. A. Metabolic futile cycles and their functions: a systems analysis of energy and control. Syst. Biol. 153, 192–200 (2006).

    Article  Google Scholar 

  128. Chen, H. C. Enhancing energy and glucose metabolism by disrupting triglyceride synthesis: lessons from mice lacking DGAT1. Nutr. Metab. 3, 10 (2006).

    Article  Google Scholar 

  129. Unger, R. H. Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chitraju, C., Walther, T. C. & Farese, R. V. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J. Lipid Res. 60, 1112–1120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cahill, G. F., Ashmore, J., Renold, A. E. & Hastings, A. B. Blood glucose and the liver. Am. J. Med. 26, 264–282 (1959).

    Article  PubMed  Google Scholar 

  133. Willems, P. H. G. M., Rossignol, R., Dieteren, C. E. J., Murphy, M. P. & Koopman, W. J. H. Redox homeostasis and mitochondrial dynamics. Cell Metab. 22, 207–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Garbarino, J. & Sturley, S. L. Saturated with fat: new perspectives on lipotoxicity. Curr. Opin. Clin. Nutr. Metab. Care 12, 110–116 (2009).

    Article  PubMed  Google Scholar 

  135. Santoleri, D. & Titchenell, P. M. Resolving the paradox of hepatic insulin resistance. Cell. Mol. Gastroenterol. Hepatol. 7, 447–456 (2019).

    Article  PubMed  Google Scholar 

  136. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381–16385 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sharma, A. K. & Wolfrum, C. DGAT inhibition at the post-absorptive phase reduces plasma FA by increasing FA oxidation. EMBO Mol. Med. 15, e18209 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Steinberg, G. R. & Hardie, D. G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 24, 255–272 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Pinkosky, S. L. et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nat. Metab. 2, 873–881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Glorian, M. et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 83, 933–943 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Leroyer, S. et al. Rosiglitazone controls fatty acid cycling by means of glyceroneogenesis and glycerol phosphorylation. FASEB J. 20, A957 (2006).

    Article  Google Scholar 

  142. Haluzík, M. M. & Haluzík, M. PPAR-alpha and insulin sensitivity. Physiol. Res. 55, 115–122 (2006).

    Article  PubMed  Google Scholar 

  143. Lefebvre, P., Chinetti, G., Fruchart, J. -C. & Staels, B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kalliora, C. & Drosatos, K. The glitazars paradox: cardiotoxicity of the metabolically beneficial dual PPARα and PPARγ activation. J. Cardiovasc. Pharmacol. 76, 514–526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dumont, L. et al. Targeting adrenergic receptors to activate brown fat without cardiovascular effects. Physiology 38, 5764490 (2023).

    Article  Google Scholar 

  146. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Straat, M. E. et al. Stimulation of the beta-2-adrenergic receptor with salbutamol activates human brown adipose tissue. Cell Rep. Med. 4, 100942 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Harper, J. A., Dickinson, K. & Brand, M. D. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes. Rev. 2, 255–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Ukropec, J., Anunciado, R. P., Ravussin, Y., Hulver, M. W. & Kozak, L. P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1−/− mice. J. Biol. Chem. 281, 31894–31908 (2006).

    CAS  PubMed  Google Scholar 

  150. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Cox, A. R. et al. The rheumatoid arthritis drug auranofin lowers leptin levels and exerts antidiabetic effects in obese mice. Cell Metab. 34, 1932–1946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Blondin, D. P. et al. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab. 25, 438–447 (2017). This paper showed that mobilization of TG from adipose tissue is crucial for thermogenesis in humans.

    Article  CAS  PubMed  Google Scholar 

  154. Crane, J. D. et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Suchacki, K. J. et al. The serotonin transporter sustains human brown adipose tissue thermogenesis. Nat. Metab. 5, 1319–1336 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Argilés, J. M., Fontes-Oliveira, C. C., Toledo, M., López-Soriano, F. J. & Busquets, S. Cachexia: a problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 5, 279–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Torosian, M. H., Bartlett, D. L., Chatzidakis, C. & Stein, T. P. Effect of tumor burden on futile glucose and lipid cycling in tumor-bearing animals. J. Surg. Res. 55, 68–73 (1993).

    Article  CAS  PubMed  Google Scholar 

  158. Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  160. Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997). This paper highlighted that at room temperature housing, loss of UCP1 does not cause obesity as previously speculated.

    Article  ADS  PubMed  Google Scholar 

  162. Townsend, L. K., Wang, D., Wright, D. C. & Blondin, D. P. Skeletal muscle, not adipose tissue, mediates cold-induced metabolic benefits. Nat. Metab. 5, 1074–1077 (2023).

    Article  PubMed  Google Scholar 

  163. Zhang, Y. et al. miR-378 activates the pyruvate-pep futile cycle and enhances lipolysis to ameliorate obesity in mice. EBioMedicine 5, 93–104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhu, A., Romero, R. & Petty, H. R. A sensitive fluorimetric assay for pyruvate. Anal. Biochem. 396, 146–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ikeda, K. & Yamada, T. Adipose tissue thermogenesis by calcium futile cycling. J. Biochem. 172, 197–203 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Soeters, P. B. et al. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin. Nutr. 40, 2988–2998 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Karpatkin, S., Helmreich, E. & Cori, C. F. Regulation of glycolysis in muscle. J. Biol. Chem. 239, 3139–3145 (1964).

    Article  CAS  PubMed  Google Scholar 

  170. Staehr, C. et al. Migraine‐associated mutation in the Na,K‐ATPase leads to disturbances in cardiac metabolism and reduced cardiac function. J. Am. Heart Assoc. 11, e021814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Williams, C. H. Malignant hyperthermia: a runaway thermogenic futile cycle at the sodium channel level. Adv. Biosci. Biotechnol. 5, 197–200 (2014).

    Article  Google Scholar 

  172. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nicholls, D. G. & Brand, M. D. A critical assessment of the role of creatine in brown adipose tissue thermogenesis. Nat. Metab. 5, 21–28 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Rahbani, J. F. et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590, 480–485 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sun, Y. et al. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593, 580–585 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rotondo, F. et al. Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Sci. Rep. 7, 8983 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  177. Mugabo, Y. et al. Identification of a mammalian glycerol-3-phosphate phosphatase: role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc. Natl Acad. Sci. USA 113, E430–E439 (2016). This paper reported the identification of a phosphatase that could hydrolyse G3P.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ward, C. et al. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim. Biophys. Acta 1861, 269–284 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Schulze, R. J., Sathyanarayan, A. & Mashek, D. G. Breaking fat: the regulation and mechanisms of lipophagy. Biochim. Biophys. Acta 1862, 1178–1187 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  181. O’Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Fu, Y. et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res. 31, 965–979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chen, N., Lu, B. & Fu, Y. Autophagic clearance of lipid droplets alters metabolic phenotypes in a genetic obesity–diabetes mouse model. Phenomics 3, 119–129 (2023).

    Article  PubMed  Google Scholar 

  184. Song, W. et al. Lipid kinase PIK3C3 maintains healthy brown and white adipose tissues to prevent metabolic diseases. Proc. Natl Acad. Sci. USA 120, e2214874120 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Gomaraschi, M., Bonacina, F. & Norata, G. D. Lysosomal acid lipase: from cellular lipid handler to immunometabolic target. Trends Pharmacol. Sci. 40, 104–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Zhao, Z. et al. Tip60-mediated Rheb acetylation links palmitic acid with mTORC1 activation and insulin resistance. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553816 (2023).

  187. Angel, A. & Farkas, J. Regulation of cholesterol storage in adipose tissue. J. Lipid Res. 15, 491–499 (1974).

    Article  CAS  PubMed  Google Scholar 

  188. Gonen, A. & Miller, Y. I. From inert storage to biological activity—in search of identity for oxidized cholesteryl esters. Front. Endocrinol. 11, 602252 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We express our appreciation for many excellent studies that contributed to concept refining, but we could not cite them due to space limitations. We thank R. S. Dewal for very helpful inputs on content and presentation. We also thank M. Geiger and S. Turner for excellent management support. A.K.S. is grateful to previous mentors Y. Sharma and A. Prakash. Figures were created using BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.K.S.; idea/content refinement: A.K.S., R.K. and C.W.; manuscript writing (first draft): A.K.S.; manuscript editing: A.K.S., R.K. and C.W.; figures were prepared by A.K.S.; funds, administration and supervision: C.W.

Corresponding authors

Correspondence to Anand Kumar Sharma or Christian Wolfrum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Alfredo Gimenez-Cassina and Isabella Samuelson, in collaboration with the Nature Metabolism team

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Khandelwal, R. & Wolfrum, C. Futile lipid cycling: from biochemistry to physiology. Nat Metab (2024). https://doi.org/10.1038/s42255-024-01003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42255-024-01003-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing