Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiological and pathological roles of lipogenesis

Abstract

Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of lipogenesis.
Fig. 2: Signalling pathways for transcriptional and post-translational regulation of lipogenesis following hormonal and nutritional stimuli.
Fig. 3: In obesity, adipose and hepatic lipogenesis are oppositely regulated.
Fig. 4: Roles of lipogenesis in non-metabolic cell types.

Similar content being viewed by others

References

  1. Yoon, H., Shaw, J. L., Haigis, M. C. & Greka, A. Lipid metabolism in sickness and in health: emerging regulators of lipotoxicity. Mol. Cell 81, 3708–3730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Batchuluun, B., Pinkosky, S. L. & Steinberg, G. R. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 21, 283–305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y., Viscarra, J., Kim, S. J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3, 1608–1620 (2021). The authors show that adipose de novo lipogenesis is supported by glucose, and the pentose phosphate pathway provides NADPH, while hepatic lipogenesis mainly uses acetate and lactate, with NADPH generated by folate-mediated serine catabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Czech, M. P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol. Metab. 34, 27–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song, Z., Xiaoli, A. M. & Yang, F. Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients 10, 1383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Hubler, M. J. & Kennedy, A. J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 34, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Tracey, T. J., Steyn, F. J., Wolvetang, E. J. & Ngo, S. T. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hamsanathan, S. & Gurkar, A. U. Lipids as regulators of cellular senescence. Front. Physiol. 13, 796850 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V. & Fendt, S. M. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell 56, 1363–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    Article  PubMed  Google Scholar 

  14. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, B., Song, B. L. & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2, 132–141 (2020).

    Article  PubMed  Google Scholar 

  16. Sanders, F. W. & Griffin, J. L. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc. 91, 452–468 (2016).

    Article  PubMed  Google Scholar 

  17. Matschinsky, F. M. & Wilson, D. F. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 10, 148 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paiva, P. et al. Animal fatty acid synthase: a chemical nanofactory. Chem. Rev. 121, 9502–9553 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S. et al. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun. Biol. 5, 584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotronen, A. et al. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity 18, 937–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Harayama, T. & Shimizu, T. Roles of polyunsaturated fatty acids, from mediators to membranes. J. Lipid Res. 61, 1150–1160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yilmaz, M., Claiborn, K. C. & Hotamisligil, G. S. De novo lipogenesis products and endogenous lipokines. Diabetes 65, 1800–1807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, V. L., Kim, J. T. & Long, J. Z. Adipose tissue lipokines: recent progress and future directions. Diabetes 69, 2541–2548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kong, J. et al. Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nat. Commun. 11, 578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benador, I. Y., Veliova, M., Liesa, M. & Shirihai, O. S. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab. 29, 827–835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez Calejman, C. et al. mTORC2–AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat. Commun. 11, 575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Silva, J. C. P. et al. Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue. Metab. Eng. 56, 69–76 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, S. et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arden, C. et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 443, 111–123 (2012).

  31. Dentin, R. et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J. Hepatol. 56, 199–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Kleinschmidt, A. K., Moss, J. & Lane, D. M. Acetyl coenzyme A carboxylase: filamentous nature of the animal enzymes. Science 166, 1276–1278 (1969).

    Article  CAS  PubMed  Google Scholar 

  33. Hunkeler, M. et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558, 470–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. & Lee, W. M. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223–227 (2006).

    CAS  Google Scholar 

  35. Wei, X., Schultz, K., Bazilevsky, G. A., Vogt, A. & Marmorstein, R. Molecular basis for acetyl-CoA production by ATP-citrate lyase. Nat. Struct. Mol. Biol. 27, 33–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Lin, R. et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51, 506–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dentin, R. et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Invest. 115, 2843–2854 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yahagi, N. et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274, 35840–35844 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, J., Teran-Garcia, M., Park, J. H., Nakamura, M. T. & Clarke, S. D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J. Biol. Chem. 276, 9800–9807 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Worgall, T. S., Sturley, S. L., Seo, T., Osborne, T. F. & Deckelbaum, R. J. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. J. Biol. Chem. 273, 25537–25540 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi, Y. et al. Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit. J. Biol. Chem. 285, 11681–11691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. London, E., Bloyd, M. & Stratakis, C. A. PKA functions in metabolism and resistance to obesity: lessons from mouse and human studies. J. Endocrinol. 246, R51–R64 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamamoto, T. et al. Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J. Biol. Chem. 282, 11687–11695 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. H. et al. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation. Hepatology 60, 844–857 (2014). This study demonstrated that, upon fasting, SREBP1c protein in the liver is rapidly degraded by E3 ubiquitin ligase ring finger protein 20 to suppress unnecessary lipogenesis.

    Article  CAS  PubMed  Google Scholar 

  45. Lu, M. & Shyy, J. Y. Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. Am. J. Physiol. Cell Physiol. 290, C1477–C1486 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, G. Y. et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol. Cell. Biol. 34, 926–938 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kawaguchi, T., Takenoshita, M., Kabashima, T. & Uyeda, K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc. Natl Acad. Sci. USA 98, 13710–13715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Potapova, I. A., El-Maghrabi, M. R., Doronin, S. V. & Benjamin, W. B. Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry 39, 1169–1179 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Gathercole, L. L. et al. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS ONE 6, e26223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olefsky, J. M. Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J. Clin. Invest. 56, 1499–1508 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bujalska, I. J., Kumar, S. & Stewart, P. M. Does central obesity reflect ‘Cushing’s disease of the omentum’? Lancet 349, 1210–1213 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Akalestou, E., Genser, L. & Rutter, G. A. Glucocorticoid metabolism in obesity and following weight loss. Front. Endocrinol. 11, 59 (2020).

    Article  Google Scholar 

  53. Morgan, S. A. et al. 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc. Natl Acad. Sci. USA 111, E2482–E2491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yokoyama, C. et al. Srebp-1, a basic-helix–loop–helix-leucine zipper protein that controls transcription of the low-density-lipoprotein receptor gene. Cell 75, 187–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Tontonoz, P., Kim, J. B., Graves, R. A. & Spiegelman, B. M. ADD1: a novel helix–loop–helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753–4759 (1993). These two studies cloned and identified SREBP1c (ADD1) as a member of the bHLH leucine zipper family that regulates both hepatic lipid metabolism and adipogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sarvari, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Briggs, M. R., Yokoyama, C., Wang, X., Brown, M. S. & Goldstein, J. L. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J. Biol. Chem. 268, 14490–14496 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, X. et al. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J. Biol. Chem. 268, 14497–14504 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Hua, X. et al. SREBP-2, a second basic-helix–loop–helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl Acad. Sci. USA 90, 11603–11607 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amemiya-Kudo, M. et al. Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J. Biol. Chem. 275, 31078–31085 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, J. B. et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix–loop–helix domain. Mol. Cell. Biol. 15, 2582–2588 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y., Li, P., Fan, L. & Wu, M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun. Signal. 16, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang, T. et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, J. et al. Decreased lipid synthesis in livers of mice with disrupted site-1 protease gene. Proc. Natl Acad. Sci. USA 98, 13607–13612 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guan, M. et al. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6. Clin. Cancer Res. 17, 1796–1806 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang, G. et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277, 9520–9528 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Horton, J. D., Bashmakov, Y., Shimomura, I. & Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl Acad. Sci. USA 95, 5987–5992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, J. B. et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest. 101, 1–9 (1998). These two studies showed that SREBP1c (ADD1) is dynamically regulated by fasting and refeeding status in liver and adipose tissue, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cagen, L. M. et al. Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem. J. 385, 207–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Tian, J., Goldstein, J. L. & Brown, M. S. Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex. Proc. Natl Acad. Sci. USA 113, 8182–8187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441–3446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bakan, I. & Laplante, M. Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23, 226–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gosis, B. S. et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 376, eabf8271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, K. H. et al. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J. Biol. Chem. 279, 51999–52006 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Owen, J. L. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc. Natl Acad. Sci. USA 109, 16184–16189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng, C. et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell 28, 569–581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, J. Y. et al. PIDDosome–SCAP crosstalk controls high-fructose-diet-dependent transition from simple steatosis to steatohepatitis. Cell Metab. 34, 1548–1560 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Todoric, J. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat. Metab. 2, 1034–1045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kammoun, H. L. et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shimano, H. et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115–2124 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shimano, H. et al. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832–35839 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Osborne, T. F. & Espenshade, P. J. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been. Genes Dev. 23, 2578–2591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Shimomura, I., Shimano, H., Korn, B. S., Bashmakov, Y. & Horton, J. D. Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J. Biol. Chem. 273, 35299–35306 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, J. B. & Spiegelman, B. M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10, 1096–1107 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, J. B., Wright, H. M., Wright, M. & Spiegelman, B. M. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc. Natl Acad. Sci. USA 95, 4333–4337 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, G. et al. SREBP1c–PAX4 axis mediates pancreatic beta-cell compensatory responses upon metabolic stress. Diabetes 68, 81–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, J. H. et al. RNF20 suppresses tumorigenesis by inhibiting the SREBP1c–PTTG1 axis in kidney cancer. Mol. Cell. Biol. 37, e00265-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jang, H. et al. SREBP1c–CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat. Commun. 7, 12180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, G. et al. SREBP1c–PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab. 34, 702–718 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Hirano, Y., Yoshida, M., Shimizu, M. & Sato, R. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J. Biol. Chem. 276, 36431–36437 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Ponugoti, B. et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285, 33959–33970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403–1417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, B., Luo, Y., Ji, N., Hu, C. & Lu, Y. Orosomucoid 2 maintains hepatic lipid homeostasis through suppression of de novo lipogenesis. Nat. Metab. 4, 1185–1201 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Ma, L., Tsatsos, N. G. & Towle, H. C. Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. J. Biol. Chem. 280, 12019–12027 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J. & Postic, C. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24, 257–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D. & Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281–7286 (2004). The authors generated ChREBP knockout mice and showed that ChREBP stimulates both lipogenic and glycolytic gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma, L., Robinson, L. N. & Towle, H. C. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281, 28721–28730 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Girard, J., Ferre, P. & Foufelle, F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17, 325–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012). This study identified a new ChREBP isoform, ChREBP-β, which is regulated by glucose uptake and transcribed from an alternative promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sanchez-Gurmaches, J. et al. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 27, 195–209 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Kabashima, T., Kawaguchi, T., Wadzinski, B. E. & Uyeda, K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl Acad. Sci. USA 100, 5107–5112 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mourrieras, F. et al. Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations. Biochem. J. 326, 345–349 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Foufelle, F. et al. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J. Biol. Chem. 267, 20543–20546 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Li, M. V. et al. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem. Biophys. Res. Commun. 395, 395–400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, M. V., Chang, B., Imamura, M., Poungvarin, N. & Chan, L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55, 1179–1189 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. McFerrin, L. G. & Atchley, W. R. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS ONE 7, e34803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guinez, C. et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60, 1399–1413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sakiyama, H. et al. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem. Biophys. Res. Commun. 402, 784–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Bideyan, L., Nagari, R. & Tontonoz, P. Hepatic transcriptional responses to fasting and feeding. Genes Dev. 35, 635–657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cha-Molstad, H., Saxena, G., Chen, J. & Shalev, A. Glucose-stimulated expression of Txnip is mediated by carbohydrate response element-binding protein, p300, and histone H4 acetylation in pancreatic beta cells. J. Biol. Chem. 284, 16898–16905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Abdul-Wahed, A., Guilmeau, S. & Postic, C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 26, 324–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Crewe, C. et al. SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI Insight 5, e129397 (2019).

    Google Scholar 

  121. Linden, A. G. et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J. Lipid Res. 59, 475–487 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Foretz, M., Guichard, C., Ferre, P. & Foufelle, F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl Acad. Sci. USA 96, 12737–12742 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, S. Y. et al. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J. Biol. Chem. 279, 30823–30829 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Apfel, R. et al. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol. 14, 7025–7035 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wiebel, F. F. & Gustafsson, J. A. Heterodimeric interaction between retinoid X receptor α and orphan nuclear receptor OR1 reveals dimerization-induced activation as a novel mechanism of nuclear receptor activation. Mol. Cell. Biol. 17, 3977–3986 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Joseph, S. B. et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019–11025 (2002). The authors demonstrated that LXRs regulate FASN expression through direct interaction with the FASN promoter as well as through activation of SREBP1c expression

  128. Anthonisen, E. H. et al. Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J. Biol. Chem. 285, 1607–1615 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Hwahng, S. H., Ki, S. H., Bae, E. J., Kim, H. E. & Kim, S. G. Role of adenosine monophosphate-activated protein kinase–p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-α-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology 49, 1913–1925 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, D. & Sul, H. S. Upstream stimulatory factor binding to the E-box at −65 is required for insulin regulation of the fatty acid synthase promoter. J. Biol. Chem. 272, 26367–26374 (1997). This study demonstrated that USF stimulates FASN expression by binding to the E-box at the FASN promoter.

    Article  CAS  PubMed  Google Scholar 

  131. Moustaid, N., Beyer, R. S. & Sul, H. S. Identification of an insulin response element in the fatty acid synthase promoter. J. Biol. Chem. 269, 5629–5634 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Griffin, M. J., Wong, R. H., Pandya, N. & Sul, H. S. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J. Biol. Chem. 282, 5453–5467 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Wong, R. H. et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. & Benitah, S. A. The role of lipids in cancer progression and metastasis. Cell Metab. 34, 1675–1699 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I. & Kim, J. B. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. 7, 30 (2016).

    Article  Google Scholar 

  136. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Nahmgoong, H. et al. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab. 34, 458–472 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Cox, N. et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 373, eabe9383 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huh, J. Y. & Kim, J. B. TIM4+ adipose tissue-resident macrophages: new modulators of adiposity. Nat. Rev. Endocrinol. 17, 645–646 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Klip, A., McGraw, T. E. & James, D. E. Thirty sweet years of GLUT4. J. Biol. Chem. 294, 11369–11381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Shepherd, P. R. et al. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268, 22243–22246 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Carvalho, E., Kotani, K., Peroni, O. D. & Kahn, B. B. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab. 289, E551–E561 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Fernandez, S. et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 27, 2772–2784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mao, J. et al. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues. Proc. Natl Acad. Sci. USA 106, 17576–17581 (2009).

  146. Shimomura, I. et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182–3194 (1998). The authors generated Fabp4-driven SREBP1c transgenic mice and showed that superphysiological overexpression of SREBP1c in adipose tissue impairs adipogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Horton, J. D., Shimomura, I., Ikemoto, S., Bashmakov, Y. & Hammer, R. E. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J. Biol. Chem. 278, 36652–36660 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Dong, Y. et al. Impaired adipose expansion caused by liver X receptor activation is associated with insulin resistance in mice fed a high-fat diet. J. Mol. Endocrinol. 58, 141–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Czech, M. P. Cellular basis of insulin insensitivity in large rat adipocytes. J. Clin. Invest. 57, 1523–1532 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guilherme, A. et al. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Mol. Metab. 6, 781–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Roberts, R. et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 52, 882–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).

    Article  PubMed  Google Scholar 

  154. Kim, J. I. et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol. Cell. Biol. 35, 1686–1699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kim, J. I. et al. During adipocyte remodeling, lipid droplet configurations regulate insulin sensitivity through F-actin and G-actin reorganization. Mol. Cell. Biol. 39, e00210-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hu, E., Kim, J. B., Sarraf, P. & Spiegelman, B. M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274, 2100–2103 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Labbe, S. M. et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 29, 2046–2058 (2015). Using isotope tracers, the authors showed that, in BAT, cold exposure increases glucose and lipid uptake, accompanied by an increase in oxidative activity.

    Article  CAS  PubMed  Google Scholar 

  158. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  PubMed  Google Scholar 

  159. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Adlanmerini, M. et al. Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc. Natl Acad. Sci. USA 116, 18691–18699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Blondin, D. P. et al. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab. 25, 438–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Jung, S. M. et al. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep. 36, 109459 (2021). Using metabolomics, stable isotope tracing and transcriptomic data, the authors showed that cold-adapted BAT rapidly synthesizes fatty acids and acyl-carnitine from glucose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Held, N. M. et al. Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term β-adrenergic activation. Sci. Rep. 8, 9562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yu, X. X., Lewin, D. A., Forrest, W. & Adams, S. H. Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J. 16, 155–168 (2002).

    Article  PubMed  Google Scholar 

  165. Tan, C. Y. et al. Brown adipose tissue thermogenic capacity is regulated by Elovl6. Cell Rep. 13, 2039–2047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guilherme, A. et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mottillo, E. P. et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J. Lipid Res. 55, 2276–2286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Bu, S. Y. & Mashek, D. G. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J. Lipid Res. 51, 3270–3280 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Banke, N. H. et al. Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARα. Circ. Res. 107, 233–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lee, Y. H., Kim, S. N., Kwon, H. J. & Granneman, J. G. Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci. Rep. 7, 39794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Biddinger, S. B. et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 7, 125–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rui, L. Energy metabolism in the liver. Compr. Physiol. 4, 177–197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Cunningham, R. P. & Porat-Shliom, N. Liver zonation—revisiting old questions with new technologies. Front. Physiol. 12, 732929 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Guzman, M. & Castro, J. Zonation of fatty acid metabolism in rat liver. Biochem. J. 264, 107–113 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chakravarthy, M. V. et al. ‘New’ hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Chakravarthy, M. V. et al. Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell 138, 476–488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Schwarz, J. M., Linfoot, P., Dare, D. & Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Wilke, M. S. et al. Synthesis of specific fatty acids contributes to VLDL–triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 52, 1628–1637 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014). By administering isotopes to patients with NAFLD and control participants, the authors demonstrated that patients with NAFLD have increased synthesis of fatty acids.

    Article  CAS  PubMed  Google Scholar 

  185. Dorn, C. et al. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int. J. Clin. Exp. Pathol. 3, 505–514 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Moon, Y. A. et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Matsuzaka, T. et al. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology 56, 2199–2208 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Matsuzaka, T. et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat. Med. 13, 1193–1202 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Miyazaki, M. et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 6, 484–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Cohen, P. et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Ntambi, J. M. et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl Acad. Sci. USA 99, 11482–11486 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Aljohani, A. et al. Hepatic stearoyl-CoA desaturase-1 deficiency-mediated activation of mTORC1–PGC-1α axis regulates ER stress during high-carbohydrate feeding. Sci. Rep. 9, 15761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kim, Y. Y. et al. Hepatic GSK3β-dependent CRY1 degradation contributes to diabetic hyperglycemia. Diabetes 71, 1373–1387 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Caron, A., Richard, D. & Laplante, M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35, 321–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Bar-Peled, L. & Sabatini, D. M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Lochner, M., Berod, L. & Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36, 81–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Yang, K. et al. T cell exit from quiescence and differentiation into TH2 cells depend on raptor–mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. & Waldmann, H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front. Immunol. 8, 1949 (2017).

    Article  PubMed  Google Scholar 

  203. Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreno, L. J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10, 2993 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Dennis, E. A. et al. A mouse macrophage lipidome. J. Biol. Chem. 285, 39976–39985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Castoldi, A. et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat. Commun. 11, 4107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Im, S. S. et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13, 540–549 (2011). This study showed that SREBP1a, a major isoform in immune cells, links lipid metabolism to the innate immune response by activating lipogenesis and inflammasome formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Oishi, Y. et al. SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab. 25, 412–427 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Wei, X. et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539, 294–298 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. van Eijkeren, R. J., Krabbe, O., Boes, M., Schipper, H. S. & Kalkhoven, E. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology 153, 179–189 (2018).

    Article  PubMed  Google Scholar 

  210. Huh, J. Y. et al. A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol. Cell. Biol. 33, 328–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Huh, J. Y. et al. Deletion of CD1d in adipocytes aggravates adipose tissue inflammation and insulin resistance in obesity. Diabetes 66, 835–847 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. LaMarche, N. M. et al. Distinct iNKT cell populations use IFNγ or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab. 32, 243–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Park, J. et al. Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes Dev. 33, 1657–1672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bolanos, J. P. & Medina, J. M. Lipogenesis from lactate in fetal rat brain during late gestation. Pediatr. Res. 33, 66–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  215. Medina, J. M. & Tabernero, A. Lactate utilization by brain cells and its role in CNS development. J. Neurosci. Res. 79, 2–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  216. Rhea, E. M., Rask-Madsen, C. & Banks, W. A. Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. J. Physiol. 596, 4753–4765 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Banks, W. A., Owen, J. B. & Erickson, M. A. Insulin in the brain: there and back again. Pharmacol. Ther. 136, 82–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Okamoto, K. et al. Sterol regulatory element binding protein (SREBP)-1 expression in brain is affected by age but not by hormones or metabolic changes. Brain Res. 1081, 19–27 (2006).

    Article  CAS  Google Scholar 

  219. Scherer, T. et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013). This study showed that neural stem and progenitor cells are in a distinct metabolic state and require FASN-dependent lipogenesis for proliferation.

    Article  CAS  PubMed  Google Scholar 

  221. Najmabadi, H. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Bowers, M. et al. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell 27, 98–109 (2020).

    CAS  Google Scholar 

  223. Gonzalez-Bohorquez, D. et al. FASN-dependent de novo lipogenesis is required for brain development. Proc. Natl Acad. Sci. USA 119, e2112040119 (2022). This study showed that lipogenesis by FASN has a pivotal role in mouse and human brain development by regulating the polarity of apical progenitors and progenitor proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sedel, F., Bernard, D., Mock, D. M. & Tourbah, A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 110, 644–653 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. EuroEPINOMICS-RES Consortium, Epilepsy Phenome/Genome Project & Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 95, 360–370 (2014).

    Article  Google Scholar 

  226. Grassi, D. et al. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl Acad. Sci. USA 115, E2634–E2643 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Moreno-Jimenez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Schmitt, S., Castelvetri, L. C. & Simons, M. Metabolism and functions of lipids in myelin. Biochim. Biophys. Acta 1851, 999–1005 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Montani, L. et al. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J. Cell Biol. 217, 1353–1368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Dimas, P. et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife 8, e44702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Verheijen, M. H. et al. SCAP is required for timely and proper myelin membrane synthesis. Proc. Natl Acad. Sci. USA 106, 21383–21388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cermenati, G. et al. Lack of sterol regulatory element binding factor-1c imposes glial fatty acid utilization leading to peripheral neuropathy. Cell Metab. 21, 571–583 (2015).

    Article  CAS  PubMed  Google Scholar 

  234. Camargo, N. et al. Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol. 15, e1002605 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Li, X., Chen, Y. T., Hu, P. & Huang, W. C. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol. Cancer Ther. 13, 855–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Tang, J. J. et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 13, 44–56 (2011). The authors identified the SREBP inhibitor betulin and showed that betulin treatment reduced the size and improved the stability of atherosclerotic plaques.

    Article  CAS  PubMed  Google Scholar 

  237. Yin, F. et al. SREBP-1 inhibitor betulin enhances the antitumor effect of sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis. 10, 672 (2019).

    Google Scholar 

  238. Thupari, J. N., Landree, L. E., Ronnett, G. V. & Kuhajda, F. P. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc. Natl Acad. Sci. USA 99, 9498–9502 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Loomba, R. et al. TVB-2640 (FASN inhibitor) for the treatment of nonalcoholic steatohepatitis: FASCINATE-1, a randomized, placebo-controlled phase 2a trial. Gastroenterology 161, 1475–1486 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Beysen, C. et al. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with non-alcoholic fatty liver disease: results from two early-phase randomized trials. Diabetes Obes. Metab. 23, 700–710 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Schreurs, M. et al. Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet. Diabetes Obes. Metab. 11, 987–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  242. Pinkosky, S. L. et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Commun. 7, 13457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ratziu, V. et al. Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial. Nat. Med. 27, 1825–1835 (2021). This study reported that aramchol, a partial inhibitor of hepatic SCD1, improved steatohepatitis and fibrosis in rodents and reduced steatosis in an early clinical trial.

  244. Kamisuki, S. et al. Synthesis and evaluation of diarylthiazole derivatives that inhibit activation of sterol regulatory element-binding proteins. J. Med. Chem. 54, 4923–4927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Shao, W., Machamer, C. E. & Espenshade, P. J. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner. J. Lipid Res. 57, 1564–1573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Hawkins, J. L. et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Ther. 326, 801–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  247. Zhao, X. et al. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity. Diabetes 63, 2464–2473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Soyal, S. M., Nofziger, C., Dossena, S., Paulmichl, M. & Patsch, W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol. Sci. 36, 406–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Quan, H. Y. et al. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK–mTOR–SREBP signaling pathway. Biochem. Pharmacol. 85, 1330–1340 (2013).

    Article  CAS  PubMed  Google Scholar 

  250. Kamisuki, S. et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem. Biol. 16, 882–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  251. Wen, Y. A. et al. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 9, 265 (2018).

    Google Scholar 

  252. Wang, T. B. et al. SREBP1 site 1 protease inhibitor PF-429242 suppresses renal cell carcinoma cell growth. Cell Death Dis. 12, 717 (2021).

    CAS  Google Scholar 

  253. Hay, B. A. et al. Aminopyrrolidineamide inhibitors of site-1 protease. Bioorg. Med. Chem. Lett. 17, 4411–4414 (2007).

    Article  CAS  PubMed  Google Scholar 

  254. Omura, S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev. 40, 681–697 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kuhajda, F. P. et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl Acad. Sci. USA 97, 3450–3454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Makimura, H. et al. Cerulenin mimics effects of leptin on metabolic rate, food intake, and body weight independent of the melanocortin system, but unlike leptin, cerulenin fails to block neuroendocrine effects of fasting. Diabetes 50, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  257. Cheng, G. et al. Cerulenin blockade of fatty acid synthase reverses hepatic steatosis in ob/ob mice. PLoS ONE 8, e75980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kumar, M. V., Shimokawa, T., Nagy, T. R. & Lane, M. D. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc. Natl Acad. Sci. USA 99, 1921–1925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Syed-Abdul, M. M. et al. Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatology 72, 103–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Ventura, R. et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2, 808–824 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Falchook, G. et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 34, 100797 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 394–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473 (2018).

    Article  CAS  PubMed  Google Scholar 

  264. Calle, R. A. et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 27, 1836–1848 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Lawitz, E. J. et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 16, 1983–1991 (2018).

    Article  CAS  PubMed  Google Scholar 

  266. Yu, X. X. et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42, 362–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  267. Lewis, Y. S. & Neelakantan, S. (−)-Hydroxycitric acid—the principal acid in the fruits of Garcinia cambogia desr. Phytochemistry 4, 619–625 (1965).

    Article  CAS  Google Scholar 

  268. Watson, J. A., Fang, M. & Lowenstein, J. M. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch. Biochem. Biophys. 135, 209–217 (1969).

    Article  CAS  PubMed  Google Scholar 

  269. Watson, J. A. & Lowenstein, J. M. Citrate and the conversion of carbohydrate into fat. J. Biol. Chem. 245, 5993–6002 (1970).

    Article  CAS  PubMed  Google Scholar 

  270. Onakpoya, I., Hung, S. K., Perry, R., Wider, B. & Ernst, E. The use of Garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J. Obes. 2011, 509038 (2011).

    Article  PubMed  Google Scholar 

  271. Maunder, A. et al. Effectiveness of herbal medicines for weight loss: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 22, 891–903 (2020).

    Article  PubMed  Google Scholar 

  272. Triscari, J. & Sullivan, A. C. Comparative effects of (−)-hydroxycitrate and (+)-allo-hydroxycitrate on acetyl CoA carboxylase and fatty acid and cholesterol synthesis in vivo. Lipids 12, 357–363 (1977).

    Article  CAS  PubMed  Google Scholar 

  273. Heymsfield, S. B. et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA 280, 1596–1600 (1998).

    Article  CAS  PubMed  Google Scholar 

  274. Lunsford, K. E., Bodzin, A. S., Reino, D. C., Wang, H. L. & Busuttil, R. W. Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantation. World J. Gastroenterol. 22, 10071–10076 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Dara, L., Hewett, J. & Lim, J. K. Hydroxycut hepatotoxicity: a case series and review of liver toxicity from herbal weight loss supplements. World J. Gastroenterol. 14, 6999–7004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Feng, X., Zhang, L., Xu, S. & Shen, A. Z. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog. Lipid Res. 77, 101006 (2020).

    Article  CAS  PubMed  Google Scholar 

  277. Masson, W., Lobo, M., Lavalle-Cobo, A., Masson, G. & Molinero, G. Effect of bempedoic acid on new onset or worsening diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 168, 108369 (2020).

    Article  CAS  PubMed  Google Scholar 

  278. Kotronen, A. et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58, 203–208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Chiappini, F. et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci. Rep. 7, 46658 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Gilat, T. et al. Prevention of diet-induced fatty liver in experimental animals by the oral administration of a fatty acid bile acid conjugate (FABAC). Hepatology 38, 436–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  281. Safadi, R. et al. The fatty acid–bile acid conjugate aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 12, 2085–2091 (2014).

    Article  CAS  PubMed  Google Scholar 

  282. Qi, Y. & Hui, X. H. The single-cell revelation of thermogenic adipose tissue. Mol. Cells 45, 673–684 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Jeon, Y. G. Shall we begin the voyage of adipose tissue exploration? A comprehensive atlas of adipose tissue at the single-cell level. Mol. Cells 45, 362–364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. DeBerardinis, R. J. & Keshari, K. R. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 185, 2678–2689 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chen, K. et al. NanoSIMS imaging of lipid absorption by intestinal enterocytes. J. Lipid Res. 63, 100290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Azzarello, F. et al. Single-cell imaging of alpha and beta cell metabolic response to glucose in living human Langerhans islets. Commun. Biol. 5, 1232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Matthaus, C. et al. Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling. Anal. Chem. 84, 8549–8556 (2012).

    Article  PubMed  Google Scholar 

  289. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Hindy, G. et al. Rare coding variants in 35 genes associate with circulating lipid levels—a multi-ancestry analysis of 170,000 exomes. Am. J. Hum. Genet. 109, 81–96 (2022). These two studies examined a large, multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels and found that SNPs in lipogenic genes are closely associated with blood lipid profiles.

    Article  CAS  PubMed  Google Scholar 

  291. Park, Y. J. et al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proc. Natl Acad. Sci. USA 118, e2021073118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Liu, H. et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat. Genet. 54, 950–962 (2022).

    Article  CAS  PubMed  Google Scholar 

  293. Przybyla, L. & Gilbert, L. A. A new era in functional genomics screens. Nat. Rev. Genet. 23, 89–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Nevzorova, Y. A., Boyer-Diaz, Z., Cubero, F. J. & Gracia-Sancho, J. Animal models for liver disease—a practical approach for translational research. J. Hepatol. 73, 423–440 (2020).

    Article  PubMed  Google Scholar 

  295. Prior, N., Inacio, P. & Huch, M. Liver organoids: from basic research to therapeutic applications. Gut 68, 2228–2237 (2019).

    Article  CAS  PubMed  Google Scholar 

  296. Wei, G. et al. Comparison of murine steatohepatitis models identifies a dietary intervention with robust fibrosis, ductular reaction, and rapid progression to cirrhosis and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G174–G188 (2020).

    Article  Google Scholar 

  297. Yahagi, N. et al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. J. Biol. Chem. 277, 19353–19357 (2002).

    Article  CAS  PubMed  Google Scholar 

  298. Shao, W. & Espenshade, P. J. Expanding roles for SREBP in metabolism. Cell Metab. 16, 414–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Im, S. S. et al. Sterol regulatory element binding protein 1a regulates hepatic fatty acid partitioning by activating acetyl coenzyme A carboxylase 2. Mol. Cell. Biol. 29, 4864–4872 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Vijayakumar, A. et al. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021–1035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Jois, T. et al. Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice. Mol. Metab. 6, 1381–1394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Beaven, S. W. et al. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab. 18, 106–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Dib, L., Bugge, A. & Collins, S. LXRα fuels fatty acid-stimulated oxygen consumption in white adipocytes. J. Lipid Res. 55, 247–257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Casado, M., Vallet, V. S., Kahn, A. & Vaulont, S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J. Biol. Chem. 274, 2009–2013 (1999).

    Article  CAS  PubMed  Google Scholar 

  305. Chirala, S. S. et al. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc. Natl Acad. Sci. USA 100, 6358–6363 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Li, L. et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. J. Hepatol. 64, 333–341 (2016).

    Article  CAS  PubMed  Google Scholar 

  307. Schneider, J. G. et al. Macrophage fatty-acid synthase deficiency decreases diet-induced atherosclerosis. J. Biol. Chem. 285, 23398–23409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Abu-Elheiga, L. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl Acad. Sci. USA 102, 12011–12016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Mao, J. et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc. Natl Acad. Sci. USA 103, 8552–8557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Moon, Y. A., Ochoa, C. R., Mitsche, M. A., Hammer, R. E. & Horton, J. D. Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J. Lipid Res. 55, 2597–2605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Matsuzaka, T. Role of fatty acid elongase Elovl6 in the regulation of energy metabolism and pathophysiological significance in diabetes. Diabetol. Int. 12, 68–73 (2021).

    Article  PubMed  Google Scholar 

  312. Saito, R. et al. Macrophage Elovl6 deficiency ameliorates foam cell formation and reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1973–1979 (2011).

    Article  CAS  PubMed  Google Scholar 

  313. Matsuzaka, T. et al. Hepatocyte ELOVL fatty acid elongase 6 determines ceramide acyl-chain length and hepatic insulin sensitivity in mice. Hepatology 71, 1609–1625 (2020).

    Article  CAS  PubMed  Google Scholar 

  314. Beigneux, A. P. et al. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem. 279, 9557–9564 (2004).

    Article  CAS  PubMed  Google Scholar 

  315. Liu, K. et al. Scd1 controls de novo beige fat biogenesis through succinate-dependent regulation of mitochondrial complex II. Proc. Natl Acad. Sci. USA 117, 2462–2472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Bogie, J. F. J. et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J. Exp. Med. 217, e20191660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Wendel, A. A. et al. Glycerol-3-phosphate acyltransferase 1 deficiency in ob/ob mice diminishes hepatic steatosis but does not protect against insulin resistance or obesity. Diabetes 59, 1321–1329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Cao, J. et al. Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 306, E1176–E1187 (2014).

    Article  CAS  PubMed  Google Scholar 

  319. Zhang, C. et al. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor. Am. J. Physiol. Endocrinol. Metab. 307, E305–E315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Cortes, V. A. et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 9, 165–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Reue, K., Xu, P., Wang, X. P. & Slavin, B. G. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J. Lipid Res. 41, 1067–1076 (2000).

    Article  CAS  PubMed  Google Scholar 

  322. Phan, J. & Reue, K. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1, 73–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  323. Mu, Q. et al. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J. 34, 13033–13048 (2020).

    Article  CAS  PubMed  Google Scholar 

  324. Shimokawa, T., Kumar, M. V. & Lane, M. D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl Acad. Sci. USA 99, 66–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  325. Corominas-Faja, B. et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5, 8306–8316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Li, S. et al. TOFA suppresses ovarian cancer cell growth in vitro and in vivo. Mol. Med. Rep. 8, 373–378 (2013).

    Article  PubMed  Google Scholar 

  327. Oatman, N. et al. Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer. Sci. Adv. 7, eabd7459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Pinkham, K. et al. Stearoyl CoA desaturase is essential for regulation of endoplasmic reticulum homeostasis and tumor growth in glioblastoma cancer stem cells. Stem Cell Rep. 12, 712–727 (2019).

    CAS  Google Scholar 

  329. Chen, L. et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis. Sci. Rep. 6, 19665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Fritz, V. et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol. Cancer Ther. 9, 1740–1754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. von Roemeling, C. A. et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin. Cancer Res. 19, 2368–2380 (2013).

    Article  Google Scholar 

  332. Lee, J. et al. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J. Biol. Chem. 291, 22207–22217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Kuda, O. et al. Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 65, 2580–2590 (2016).

    Article  CAS  PubMed  Google Scholar 

  334. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Patel, R. et al. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 606, 968–975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Syed, I. et al. Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Syed, I. et al. PAHSAs attenuate immune responses and promote beta cell survival in autoimmune diabetic mice. J. Clin. Invest. 129, 3717–3731 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  338. Serhan, C. N. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25, 101–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  339. Prieto, P. et al. Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ. 17, 1179–1188 (2010).

    CAS  Google Scholar 

  340. Pirault, J. & Back, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol. 9, 1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Hansen, T. V., Vik, A. & Serhan, C. N. The protectin family of specialized pro-resolving mediators: potent immunoresolvents enabling innovative approaches to target obesity and diabetes. Front. Pharmacol. 9, 1582 (2018).

    Article  CAS  PubMed  Google Scholar 

  342. Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    Article  CAS  PubMed  Google Scholar 

  343. Sugimoto, S. et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat. Metab. 4, 775–790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Vasan, S. K. et al. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study. Diabetologia 62, 2079–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Stanford, K. I. et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1111–1120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Ruvolo, P. P. Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15, 1153–1160 (2001).

    Article  CAS  PubMed  Google Scholar 

  348. Hannun, Y. A. & Luberto, C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10, 73–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  349. Shin, K. C. et al. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat. Commun. 8, 1087 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Kasumov, T. et al. Ceramide as a mediator of non-alcoholic fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Boini, K. M., Zhang, C., Xia, M., Poklis, J. L. & Li, P. L. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J. Pharmacol. Exp. Ther. 334, 839–846 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Walther, T. C., Chung, J. & Farese, R. V. Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Sohn, J. H. et al. Perilipin 1 (Plin1) deficiency promotes inflammatory responses in lean adipose tissue through lipid dysregulation. J. Biol. Chem. 293, 13974–13988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Tansey, J. T. et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc. Natl Acad. Sci. USA 98, 6494–6499 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Bulankina, A. V. et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 185, 641–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Lee, Y. K. et al. Perilipin 3 deficiency stimulates thermogenic beige adipocytes through PPARα activation. Diabetes 67, 791–804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Wang, H. et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Mejhert, N. et al. Partitioning of MLX-family transcription factors to lipid droplets regulates metabolic gene expression. Mol. Cell 77, 1251–1264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Krahmer, N. et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell. Proteomics 12, 1115–1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Lv, X. et al. Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 113–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  363. Mejhert, N. et al. The Lipid Droplet Knowledge Portal: a resource for systematic analyses of lipid droplet biology. Dev. Cell 57, 387–397 (2022). The authors have launched a portal that provides a comprehensive analysis of how genes affect LD biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  365. Rysman, E. et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010).

    Article  CAS  PubMed  Google Scholar 

  366. Griffiths, B. et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 1, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  367. Lewis, C. A. et al. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene 34, 5128–5140 (2015).

    Article  CAS  PubMed  Google Scholar 

  368. Cheng, C. et al. Ammonia stimulates SCAP/Insig dissociation and SREBP-1 activation to promote lipogenesis and tumour growth. Nat. Metab. 4, 575–588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Sun, Y. et al. SREBP1 regulates tumorigenesis and prognosis of pancreatic cancer through targeting lipid metabolism. Tumour Biol. 36, 4133–4141 (2015).

    Article  CAS  PubMed  Google Scholar 

  370. Nguyen, P. L. et al. Fatty acid synthase polymorphisms, tumor expression, body mass index, prostate cancer risk, and survival. J. Clin. Oncol. 28, 3958–3964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Wu, Y. S. et al. Polymorphisms in genes of the de novo lipogenesis pathway and overall survival of hepatocellular carcinoma patients undergoing transarterial chemoembolization. Asian Pac. J. Cancer Prev. 16, 1051–1056 (2015).

    Article  CAS  PubMed  Google Scholar 

  372. Eggert, S. L. et al. Genome-wide linkage and association analyses implicate FASN in predisposition to uterine leiomyomata. Am. J. Hum. Genet. 91, 621–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Jin, X. et al. Fatty acid synthesis pathway genetic variants and clinical outcome of non-small cell lung cancer patients after surgery. Asian Pac. J. Cancer Prev. 15, 7097–7103 (2014).

    Article  PubMed  Google Scholar 

  374. Hilvo, M. et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 71, 3236–3245 (2011).

    Article  CAS  PubMed  Google Scholar 

  375. Chen, M. et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet. 50, 206–218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Xin, M. et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 7, 44252–44265 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  377. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article  CAS  Google Scholar 

  378. Claussnitzer, M. et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell 156, 343–358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Vinuela, A. et al. Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat. Commun. 11, 4912 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  382. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the laboratory members for helping with reading and commenting on the manuscript. This work was supported by the National Research Foundation, funded by the Korean government (NRF-2020R1A3B2078617 to J.B.K.).

Author information

Authors and Affiliations

Authors

Contributions

Y.G.J., Y.Y.K., G.L. and J.B.K. contributed to writing the manuscript under J.B.K.’s supervision.

Corresponding author

Correspondence to Jae Bum Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Xun Huang and the other, anonymous, reviewer for their contribution to the peer review of this work. Primary Handling Editor: Isabella Samuelson, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, Y.G., Kim, Y.Y., Lee, G. et al. Physiological and pathological roles of lipogenesis. Nat Metab 5, 735–759 (2023). https://doi.org/10.1038/s42255-023-00786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00786-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing