Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Interleukin-17 as a key player in neuroimmunometabolism

Abstract

In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major neuroimmunometabolic discoveries involving IL-17.
Fig. 2: IL-17-mediated signalling in target cells.
Fig. 3: Structural relationships between IL-17A, IL-17F and an archetypal neurotrophic factor.
Fig. 4: IL-17 signalling modulates cellular metabolism in a host of non-immune target cells.
Fig. 5: Evidence for evolutionarily conserved roles for IL-17 signalling beyond immunity.

Similar content being viewed by others

References

  1. Kohlgruber, A. C. et al. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018).

    CAS  PubMed Central  Google Scholar 

  2. Hu, B. et al. γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    CAS  PubMed Central  Google Scholar 

  4. Ribeiro, M. et al. Meningeal γδ T cell–derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    CAS  PubMed Central  Google Scholar 

  5. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    CAS  Google Scholar 

  6. Teijeiro, A., Garrido, A., Ferre, A., Perna, C. & Djouder, N. Inhibition of the IL-17A axis in adipocytes suppresses diet-induced obesity and metabolic disorders in mice. Nat. Metab. 3, 496–512 (2021).

    CAS  Google Scholar 

  7. Brigas, H. C. et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 36, 109574 (2021).

    CAS  Google Scholar 

  8. Rouvier, E., Luciani, M. F., Mattéi, M. G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993). This study identified IL-17A (CTLA-8) and highlighted the cytokine’s homology with the herpesvirus Saimiri gene ORF13.

  9. McGeachy, M. J., Cua, D. J. & Gaffen, S. L. The IL-17 family of cytokines in health and disease. Immunity 50, 892–906 (2019).

    CAS  PubMed Central  Google Scholar 

  10. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995). This study identified an IL-17A-binding receptor, termed IL-17R (and now known as IL-17RA).

    CAS  PubMed  Google Scholar 

  11. Gaffen, S. L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

  12. Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol. 165, 6107–6115 (2000).

    CAS  PubMed  Google Scholar 

  13. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  14. Aggarwal, S., Ghilardi, N., Xie, M. H., De Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    CAS  PubMed  Google Scholar 

  15. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). This study characterized TH17 cells: a class of CD4+ T cells that produce IL-17A, IL-17F, IL-6 and TNF, require IL-23, and frequently drive autoimmunity.

  16. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  17. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  18. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  19. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. G. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  Google Scholar 

  21. Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    CAS  PubMed Central  Google Scholar 

  22. O’Connor, W., Zenewicz, L. A. & Flavell, R. A. The dual nature of TH17 cells: shifting the focus to function. Nat. Immunol. 11, 471–476 (2010).

    Google Scholar 

  23. Wright, J. F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    CAS  Google Scholar 

  24. Wright, J. F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    CAS  Google Scholar 

  25. Goepfert, A., Lehmann, S., Blank, J., Kolbinger, F. & Rondeau, J. M. Structural analysis reveals that the cytokine IL-17F forms a homodimeric complex with receptor IL-17RC to drive IL-17RA-independent signaling. Immunity 52, 499–512 (2020). This study provided structural evidence for IL-17RA-independent IL-17 signalling events, supporting previous reports of IL-17-induced gene expression in Il17ra−/− cells, and identified 2:1 complexes of IL-17RC–IL-17F.

  26. Su, Y. et al. Interleukin-17 receptor D constitutes an alternative receptor for interleukin-17A important in psoriasis-like skin inflammation. Sci. Immunol. 4, eaau9657 (2019).

  27. Wilson, S. C. et al. Organizing structural principles of the IL-17 ligand–receptor axis. Nature 609, 622–629 (2022).

    CAS  PubMed Central  Google Scholar 

  28. Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubüser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003).

  29. Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed Central  Google Scholar 

  30. Seon, H. C., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Google Scholar 

  31. Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor receptor–associated factor (Traf)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1240 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci. USA 104, 7506–7511 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, B. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat. Immunol. 13, 1110–1117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Draberova, H. et al. Systematic analysis of the IL-17 receptor signalosome reveals a robust regulatory feedback loop. EMBO J. 39, e104202 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hymowitz, S. G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20, 5332–5341 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bechara, R., McGeachy, M. J. & Gaffen, S. L. The metabolism-modulating activity of IL-17 signaling in health and disease. J. Exp. Med. 218, e20202191 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    CAS  PubMed  Google Scholar 

  38. Teunissen, M. B. M., Koomen, C. W., De Waal Malefyt, R., Wierenga, E. A. & Bos, J. D. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111, 645–649 (1998).

    CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. Induction of intestinal Th17 cells by flagellins from segmented filamentous bacteria. Front. Immunol. 10, 2750 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Iwakura, Y., Nakae, S., Saijo, S. & Ishigame, H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol. Rev. 226, 57–79 (2008).

    CAS  PubMed  Google Scholar 

  41. Raffatellu, M. et al. Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung Cxc chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–528 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, X. et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol. 12, 1151–1158 (2011).

    CAS  PubMed  Google Scholar 

  44. Luzza, F. et al. Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori-infected human gastric mucosa. J. Immunol. 165, 5332–5337 (2000).

    CAS  PubMed  Google Scholar 

  45. Mills, K. H. G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00746-9 (2022).

  46. Reich, K. et al. Bimekizumab versus secukinumab in plaque psoriasis. N. Engl. J. Med. 385, 142–152 (2021).

    CAS  PubMed  Google Scholar 

  47. Sparber, F. & Leibundgut-Landmann, S. Interleukin-17 in antifungal immunity. Pathogens 8, 54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lévy, R. et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc. Natl Acad. Sci. USA 113, E8277–E8285 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Boisson, B. et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39, 676–686 (2013).

    CAS  PubMed  Google Scholar 

  50. Hamada, H. et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J. Immunol. 182, 3469–3481 (2009).

    CAS  PubMed  Google Scholar 

  51. Wang, X. et al. Host-derived lipids orchestrate pulmonary γδ T cell response to provide early protection against influenza virus infection. Nat. Commun. 12, 1914 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Boari, J. T. et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog. 8, e1002658 (2012).

    CAS  Google Scholar 

  53. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). This study described the striking association between SFB and IL-17, as intestinal SFB colonization was observed to determine the abundance of TH17 cells and IL-17 itself.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ritchie, N. D., Ijaz, U. Z. & Evans, T. J. IL-17 signalling restructures the nasal microbiome and drives dynamic changes following Streptococcus pneumoniae colonization. BMC Genomics 18, 807 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Regen, T. et al. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci. Immunol. 6, eaaz6563 (2021).

    CAS  PubMed  Google Scholar 

  57. Seifert, H. A. et al. Antibiotics protect against EAE by increasing regulatory and anti-inflammatory cells. Metab. Brain Dis. 33, 1599–1607 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, D. et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity 50, 692–706 (2019).

    CAS  PubMed  Google Scholar 

  59. Morais, L. H., Schreiber, H. L. & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2020).

    PubMed  Google Scholar 

  60. Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell 185, 831–846 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu, X. et al. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat. Immunol. https://doi.org/10.1038/s41590-023-01447-8 (2023).

  62. Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178, 919–932 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620 (2023).

    CAS  PubMed  Google Scholar 

  66. Chen, C. et al. IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses. Nature 542, 43–48 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo, H. et al. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep. 29, 2384–2397 (2019).

    CAS  PubMed  Google Scholar 

  68. Atladóttir, H. Ó. et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40, 1423–1430 (2010).

    PubMed  Google Scholar 

  69. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Kim, E. et al. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4+ T cells. Immunity 55, 145–158 (2022).

    CAS  PubMed  Google Scholar 

  71. Kawano, Y. et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 185, 3501–3519 (2022).

  72. Fernandes, D. J. et al. Exposure to maternal high-fat diet induces extensive changes in the brain of adult offspring. Transl. Psychiatry 11, 149 (2021).

    Google Scholar 

  73. Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mirpuri, J., Raetz, M., Wilhelm, C., Sturge, C. & Yarovinsky, F. Maternal high-fat diet alters TH17 responses and bacterial colonization in newborn mice. J. Immunol. 190, 1–9 (2013).

  75. Dhillion, P. et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. 303, 353–358 (2012).

    Google Scholar 

  76. Murakami, Y. et al. The effects of maternal interleukin-17A on social behavior, cognitive function and depression-like behavior in mice with altered kynurenine metabolites. Int. J. Tryptophan Res. https://doi.org/10.1177/11786469211026639 (2021).

  77. Fu, J. et al. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J. Neuroinflammation 19, 98 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. González, A., Calfío, C., Churruca, M. & Maccioni, R. B. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimer’s Res. Ther. 14, 56 (2022).

    Google Scholar 

  79. Craft, S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch. Neurol. 66, 300–305 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Clarke, J. R. et al. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol. Med. 7, 190–210 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mohammadi Shahrokhi, V. et al. IL-17A and IL-23: plausible risk factors to induce age-associated inflammation in Alzheimer’s disease. Immunol. Invest. 47, 812–822 (2018).

  82. Yang, J., Kou, J., Lalonde, R. & Fukuchi, K. ichiro. Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer’s disease. Brain Behav. Immun. 65, 262–273 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, D., Miller, S. D. & Koh, S. Immune mechanisms in epileptogenesis. Front. Cell. Neurosci. 7, 195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mao, L. Y. et al. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 54, e142–e145 (2013).

    CAS  PubMed  Google Scholar 

  85. Kumar, P. et al. Proinflammatory IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight 5, e126337 (2019).

  86. Xu, D. et al. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med. 215, 1169–1186 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, B., Tong, L., Jia, G. & Sun, R. Effects of ketogenic diet on the clinical and electroencephalographic features of children with drug therapy-resistant epilepsy. Exp. Ther. Med. 5, 611–615 (2013).

    CAS  PubMed  Google Scholar 

  88. Ni, F. -F. et al. The effects of ketogenic diet on the TH17/Treg cells imbalance in patients with intractable childhood epilepsy. Seizure 38, 17–22 (2016).

    Google Scholar 

  89. Xie, G. et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 23, 6164–6171 (2017).

    CAS  PubMed Central  Google Scholar 

  90. Dahlin, M. et al. Higher levels of Bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. eBioMedicine 80, 104061 (2022).

    CAS  PubMed Central  Google Scholar 

  91. Ganeshan, K. et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell 177, 399–413 (2019).

    CAS  PubMed Central  Google Scholar 

  92. Lopes, N. et al. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat. Immunol. 22, 179–192 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chandra, S. et al. Transcriptomes and metabolism define mouse and human MAIT cell heterogeneity. Preprint at bioRxiv https://doi.org/10.1101/2021.12.20.473182 (2021).

  94. Shi, W. et al. Anti-IL-17 antibody improves hepatic steatosis by suppressing interleukin-17-related fatty acid synthesis and metabolism. Clin. Dev. Immunol. 2013, 253046 (2013).

  95. Saito-Sasaki, N. et al. Maresin-1 suppresses imiquimod-induced skin inflammation by regulating IL-23 receptor expression. Sci. Rep. 8, 5522 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Pai, M. H., Liu, J. J., Hou, Y. C. & Yeh, C. L. Soybean and fish oil mixture with different ω-6/ω-3 polyunsaturated fatty acid ratios modulates dextran sulfate sodium-induced changes in small intestinal intraepithelial γδT-lymphocyte expression in mice. JPEN J. Parenter. Enter. Nutr. 40, 383–391 (2016).

    CAS  Google Scholar 

  97. Kim, J. Y. et al. N-3 polyunsaturated fatty acids restore TH17 and Treg balance in collagen antibody-induced arthritis. PLoS ONE 13, e0194331 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Goldberg, E. L. et al. Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Sci. Immunol. 4, eaav2026 (2019).

  99. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Konieczny, P. et al. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 377, eabg9302 (2022).

  101. Buckley, K. M. et al. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. eLife 6, e23481 (2017).

  102. Ray, S., De Salvo, C. & Pizarro, T. T. Central role of IL-17/Th17 immune responses and the gut microbiota in the pathogenesis of intestinal fibrosis. Curr. Opin. Gastroenterol. 30, 531–538 (2014).

    CAS  PubMed Central  Google Scholar 

  103. Segond von Banchet, G. et al. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol. Cell. Neurosci. 52, 152–160 (2013).

    CAS  Google Scholar 

  104. Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    CAS  PubMed Central  Google Scholar 

  105. Amatya, N. et al. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci. Signal. 11, eaat4617 (2018).

  106. Majumder, S. et al. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat. Immunol. 20, 534–545 (2019). This study investigated the metabolic impact of cytokine signalling in stromal populations and identified the nuclear protein IκBζ as a critical factor for IL-17-mediated induction of cell survival, fatty acid oxidation and glucose consumption in fibroblastic reticular cells.

    CAS  PubMed Central  Google Scholar 

  107. Ahmed, M. & Gaffen, S. L. IL-17 in obesity and adipogenesis. Cytokine Growth Factor Rev. 21, 449–453 (2010).

    CAS  PubMed Central  Google Scholar 

  108. Zúñiga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis and obesity. J. Immunol. 185, 6947–6959 (2010). This study highlighted the role that IL-17A plays in shaping whole-body metabolic health and adipogenesis, as adipose-resident γδ T cells were shown to regulate diet-induced obesity in an IL-17A- and age-dependent fashion.

  109. Okamura, Y. et al. Interleukin-17A/F1 deficiency reduces antimicrobial gene expression and contributes to microbiome alterations in intestines of Japanese medaka (Oryzias latipes). Front. Immunol. 11, 425 (2020).

    CAS  PubMed Central  Google Scholar 

  110. Laurent, P. et al. Decoding a neural circuit controlling global animal state in C. elegans. eLife 2015, 1–39 (2015).

    Google Scholar 

  111. Godthi, A. et al. Neuronal IL-17 controls C. elegans developmental diapause through p53/CEP-1. Preprint at bioRxiv https://doi.org/10.1101/2022.11.22.517560 (2022).

  112. Biglari, N. et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 24, 913–929 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, Y., Cao, Y., Felder, R. B. & Wei, S. -G. Knockdown of interleukin 17 receptor A (IL-17RA) in paraventricular nucleus of hypothalamus attenuates IL-17-induced pressor responses and sympathetic excitation. FASEB J. 34, 1 (2020).

    Google Scholar 

  114. Nogueira, G. et al. Interleukin-17 acts in the hypothalamus reducing food intake. Brain Behav. Immun. 87, 272–285 (2020).

    CAS  PubMed  Google Scholar 

  115. Okamura, Y. et al. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci. Rep. 11, 12099 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Teng, F. et al. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci. Immunol. 4, eaax1215 (2019).

  117. Godinho-Silva, C. et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature https://doi.org/10.1038/s41586-019-1579-3 (2019).

  118. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science https://doi.org/10.1126/science.aba8310 (2021)

  119. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

  120. Odegaard, J. I. et al. Perinatal licensing of thermogenesis by IL-33 and ST2. Cell 166, 841–854 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Al-Goblan, A. S., Al-Alfi, M. A. & Khan, M. Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. 7, 587–591 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Honkanen, J. et al. IL-17 immunity in human type 1 diabetes. J. Immunol. 185, 1959–1967 (2010).

    CAS  PubMed  Google Scholar 

  124. Qiu, A. W., Cao, X., Zhang, W. W. & Liu, Q. H. IL-17A is involved in diabetic inflammatory pathogenesis by its receptor IL-17RA. Exp. Biol. Med. 246, 57–65 (2021).

    CAS  Google Scholar 

  125. Arababadi, M. K. et al. Nephropathic complication of type-2 diabetes is following pattern of autoimmune diseases? Diabetes Res. Clin. Pract. https://doi.org/10.1016/j.diabres.2009.09.027 (2009).

  126. Bergin, R. et al. Mucosal-associated invariant T cells are associated with insulin resistance in childhood obesity, and disrupt insulin signalling via IL-17. Diabetologia 65, 1012–1017 (2022).

    CAS  PubMed Central  Google Scholar 

  127. Mohamed, R. et al. Low-dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J. Am. Soc. Nephrol. 27, 745–765 (2016).

    CAS  PubMed  Google Scholar 

  128. Shin, J. H., Shin, D. W. & Noh, M. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem. Pharmacol. 77, 1835–1844 (2009).

    CAS  PubMed  Google Scholar 

  129. Goswami, J., Hernández-Santos, N., Zuniga, L. A. & Gaffen, S. L. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur. J. Immunol. 39, 2831–2839 (2009). This study characterized interactions between IL-17 and biological sex that regulate bone health and adipogenesis, effects that were at least partially depended on leptin signalling.

  130. Bi, Y. et al. IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Sci. Bull. 62, 1052–1063 (2017).

    CAS  Google Scholar 

  131. Armstrong, E. J. & Krueger, J. G. Lipoprotein metabolism and inflammation in patients with psoriasis. Am. J. Cardiol. 118, 603–609 (2016).

    CAS  PubMed  Google Scholar 

  132. von Stebut, E. et al. IL-17A in Psoriasis and beyond: cardiovascular and metabolic implications. Front. Immunol. 10, 3096 (2020).

  133. Polak-Szczybyło, E. & Tabarkiewicz, J. IL-17A, IL-17E and IL-17F as potential biomarkers for the intensity of low-grade inflammation and the risk of cardiovascular diseases in obese people. Nutrients 14, 643 (2022).

    PubMed  PubMed Central  Google Scholar 

  134. Zhao, Q. et al. The association between IL-17A and IL-23R polymorphisms and coronary artery disease risk in a middle eastern Chinese population. J. Clin. Lab. Anal. 33, e22893 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Yu, X. H. et al. Interleukin-17A in lipid metabolism and atherosclerosis. Clin. Chim. Acta 431, 33–39 (2014).

    CAS  PubMed  Google Scholar 

  136. Cimato, T. R., Palka, B. A., Lang, J. K. & Young, R. F. LDL cholesterol modulates human CD34+ HSPCs through effects on proliferation and the IL-17 G-CSF axis. PLoS ONE 8, e73861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, S. et al. IL-17A Is proatherogenic in high-fat diet-induced and chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J. Immunol. 185, 5619–5627 (2010).

    CAS  PubMed  Google Scholar 

  138. Huang, L. H. et al. Interleukin-17 drives interstitial entrapment of tissue lipoproteins in experimental psoriasis. Cell Metab. 29, 475–487 (2019).

    CAS  PubMed  Google Scholar 

  139. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).

    PubMed  Google Scholar 

  140. von Haehling, S. & Anker, S. D. Cachexia as a major underestimated and unmet medical need: facts and numbers. J. Cachexia Sarcopenia Muscle 1, 1–5 (2010).

    Google Scholar 

  141. Fukawa, T. et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat. Med. 22, 666–671 (2016).

    CAS  PubMed  Google Scholar 

  142. Watanabe, T. et al. IL-17A in ovarian cancer. J. Cancer Ther. 11, 605–616 (2020).

    CAS  Google Scholar 

  143. Ying, L. et al. IL-17A contributes to skeletal muscle atrophy in lung cancer induced cachexia via JAK2/STAT3 pathway. Am. J. Physiol. Cell Physiol. 322, C814–C824 (2022).

    CAS  PubMed  Google Scholar 

  144. Yazawa, T. et al. Increased IL-17 production correlates with immunosuppression involving myeloid-derived suppressor cells and nutritional impairment in patients with various gastrointestinal cancers. Mol. Clin. Oncol. 1, 675–679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Yamada, Y., Saito, H. & Ikeguchi, M. Prevalence and clinical relevance of Th17 cells in patients with gastric cancer. J. Surg. Res. 178, 685–691 (2012).

    CAS  PubMed  Google Scholar 

  146. Tachibana, K. et al. IL-17 and VEGF are increased and correlated to systemic inflammation, immune suppression, and malnutrition in patients with breast cancer. Eur. J. Inflamm. 15, 219–228 (2017).

  147. Tang, H. et al. TLR4 activation is required for IL-17-induced multiple tissue inflammation and wasting in mice. J. Immunol. 185, 2563–2569 (2010). This study described a mechanism in which TLR4 and IL-17 cooperate to drive muscle atrophy and neutrophile accumulation.

    CAS  PubMed  Google Scholar 

  148. Gerdes, S., Pinter, A., Papavassilis, C. & Reinhardt, M. Effects of secukinumab on metabolic and liver parameters in plaque psoriasis patients. J. Eur. Acad. Dermatol. Venereology 34, 533–541 (2020).

    CAS  Google Scholar 

  149. Wang, H. N. & Huang, Y. H. Changes in metabolic parameters in psoriatic patients treated with secukinumab. Ther. Adv. Chronic Dis. 11, 2040622320944777 (2020). This study evaluated the metabolic impact of the IL-17-neutralizing antibody secukinumab, which was observed to improve psoriatic lesions while concomitantly altering blood lipid levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Al-Harbi, N. O. et al. Psoriatic inflammation causes hepatic inflammation with concomitant dysregulation in hepatic metabolism via IL-17A/IL-17 receptor signaling in a murine model. Immunobiology 222, 128–136 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NIH (5R01AI134861), Science Foundation Ireland (16/FRL/3865) and an Irish Research Council (IRC) Fellowship (A.D.).

Author information

Authors and Affiliations

Authors

Contributions

A.D. and B.S. drafted the figures, and L.L. revised the final version of the figures. A.D., B.S. and L.L. jointly conceived, wrote and revised the final version of the manuscript.

Corresponding author

Correspondence to Lydia Lynch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Isabella Samuelson, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglas, A., Stevens, B. & Lynch, L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 5, 1088–1100 (2023). https://doi.org/10.1038/s42255-023-00846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00846-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing