Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lithium-mediated nitrogen reduction to ammonia via the catalytic solid–electrolyte interphase

Abstract

The lithium-mediated nitrogen reduction reaction (LiNRR) produces ammonia in ambient conditions. This electrochemical pathway is dependent on a catalytic solid–electrolyte interphase—a nanoscale passivation layer formed from reductive electrolyte decomposition on the surface of lithium metal. The catalytic solid–electrolyte interphase is a unique nanostructured environment that exists on reactive metal surfaces and intimately influences product selectivity. Here we explore recent progress made in the field of lithium-mediated nitrogen reduction to ammonia, especially in light of growing knowledge about the nature of the catalytic solid–electrolyte interphase. We systematically analyse the observed chemical species and reactions that occur within the solid–electrolyte interphase. We also summarize key developments in kinetic and transport models, as well as highlight the cathodic and complementary anodic reactions. Trends in ammonia selectivities and rates with varying electrolyte compositions, cell designs and operating conditions are extracted and used to articulate a path forward for continued development of lithium-mediated nitrogen reduction to ammonia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview and history of LiNRR.
Fig. 2: Reaction network governing LiNRR conducted in THF with LiBF4 and ethanol.
Fig. 3: Comparison of selectivity and rate across different electrolyte salts and cell form factors.

Similar content being viewed by others

References

  1. Jones, K. The Chemistry of Nitrogen: Pergamon Texts in Inorganic Chemistry (Elsevier, 2013).

  2. Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).

    Google Scholar 

  3. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Google Scholar 

  4. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    CAS  PubMed Central  Google Scholar 

  5. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    CAS  Google Scholar 

  6. Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011).

    CAS  Google Scholar 

  7. Kuriyama, S. et al. Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 136, 9719–9731 (2014).

    CAS  Google Scholar 

  8. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019). Demonstration of LiNRR using a parallel-plate flow cell along with the development of a combined transport-kinetic model for this system.

    CAS  Google Scholar 

  9. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019). Development of a rigorous quantitative isotope measurement protocol to prevent false-positive ammonia synthesis results.

    CAS  Google Scholar 

  10. McFarlane, E. F. & Tompkins, F. C. Nitridation of lithium. Trans. Faraday Soc. 58, 997–1007 (1962).

    CAS  Google Scholar 

  11. Fischer, D., Cancarevic, Z., Schön, J. C. & Jansen, M. Zur Synthese und Struktur von K3N. Z. Anorg. Allg. Chem. 630, 156–160 (2004).

    CAS  Google Scholar 

  12. Vajenine, G. V. On reactions between alkali metals and active nitrogen. Solid State Sci. 10, 450–454 (2008).

    CAS  Google Scholar 

  13. Dey, A. N. Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 43, 131–171 (1977).

    CAS  Google Scholar 

  14. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047 (1979).

    CAS  Google Scholar 

  15. Liu, M., Zhang, S., Chen, M. & Wu, L. Boosting electrochemical nitrogen reduction performance through water-in-salt electrolyte. Appl. Catal. B 319, 121925 (2022).

    CAS  Google Scholar 

  16. Guha, A. et al. Mechanistic insight into high yield electrochemical nitrogen reduction to ammonia using lithium ions. Mater. Today Commun. 21, 100700 (2019).

    CAS  Google Scholar 

  17. Fichter, F., Girard, P. & Erlenmeyer, H. Elektrolytische bindung von komprimiertem stickstoff bei gewöhnlicher temperatur. Helv. Chim. Acta 13, 1228–1236 (1930). First report of lithium metal-mediated nitrogen reduction to ammonia in an autoclave cell at elevated pressures.

    CAS  Google Scholar 

  18. Tsuneto, A., Kudo, A. & Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 22, 851–854 (1993). First report of Faradaic efficiencies approaching 50% by using tetrahydrofuran (THF) as a non-aqueous electrolyte solvent for LiNRR, at elevated pressure.

    Google Scholar 

  19. Tsuneto, A., Kudo, A. & Sakata, T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J. Electroanal. Chem. 367, 183–188 (1994).

    CAS  Google Scholar 

  20. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    CAS  Google Scholar 

  21. Denvir, A., Murphy, O. J., Cisar, A., Robertson, P. & Uselton, K. Electrochemical synthesis of ammonia. US patent 6712950-B2 (2004).

  22. Joshi, A. V. & Bhavaraju, S. Ammonia synthesis using lithium ion conductive membrane. US patent 8916123 (2014).

  23. Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020). Development of a gas diffusion electrode to overcome nitrogen-transport limitations and enable hydrogen oxidation at the anode, as well as an electrochemical Haber–Bosch reactor coupled to a water electrolyser, thereby producing ammonia from N2 and H2O under ambient conditions.

    CAS  Google Scholar 

  24. Andersen, S. Z. et al. Increasing stability, efficiency and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 13, 4291–4300 (2020). Development of a micro-kinetic model for LiNRR and a potential cycling strategy for improved stability.

    CAS  Google Scholar 

  25. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid–electrolyte interphase. Joule 6, 2083–2101 (2022). High current density of 1 A cm−2 through the use of highly porous copper electrodes and the engineering of a compact and uniform SEI.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021). Development of a phosphonium proton shuttle to overcome the use of a sacrificial proton source.

    CAS  PubMed  Google Scholar 

  27. Du, H.-L. et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022). Faradaic efficiency of LiNRR close to 100% by using a high concentration lithium electrolyte salt and tailoring the physicochemical properties of the electrolyte–electrode interface.

    CAS  PubMed  Google Scholar 

  28. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023). Development of a continuous flow cell for ammonia synthesis, a platinum–gold alloy catalyst for hydrogen oxidation at the anode, and achieving a Faradaic efficiency of 61% at ambient conditions with an energy efficiency of 14%.

    CAS  PubMed  Google Scholar 

  29. Cui, X., Tang, C. & Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

    Google Scholar 

  30. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Prim. 1, 56 (2021).

    CAS  Google Scholar 

  31. Tang, C. & Qiao, S.-Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019).

    CAS  Google Scholar 

  32. Westhead, O. et al. Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat. Rev. Chem. 7, 184–201 (2023).

    CAS  Google Scholar 

  33. Yu, W., Lewis, N. S., Gray, H. B. & Dalleska, N. F. Isotopically selective quantification by UPLC-MS of aqueous ammonia at submicromolar concentrations using dansyl chloride derivatization. ACS Energy Lett. 5, 1532–1536 (2020).

    CAS  Google Scholar 

  34. Nielander, A. C. et al. A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques. ACS Catal. 9, 5797–5802 (2019).

    CAS  Google Scholar 

  35. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    CAS  PubMed Central  Google Scholar 

  36. Zaffaroni, R., Ripepi, D., Middelkoop, J. & Mulder, F. M. Gas chromatographic method for in situ ammonia quantification at parts per billion levels. ACS Energy Lett. 5, 3773–3777 (2020).

    CAS  Google Scholar 

  37. Cai, X. et al. Interaction of ammonia with nafion and electrolyte in electrocatalytic nitrogen reduction study. J. Phys. Chem. Lett. 12, 6861–6866 (2021).

    CAS  Google Scholar 

  38. Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 12, 399–402 (1978).

    CAS  Google Scholar 

  39. Giner-Sanz, J. J., Leverick, G., Pérez-Herranz, V. & Shao-Horn, Y. Optimization of the salicylate method for ammonia quantification from nitrogen electroreduction. J. Electroanal. Chem. 896, 115250 (2021).

    CAS  Google Scholar 

  40. Giner-Sanz, J. J., Leverick, G. M., Pérez-Herranz, V. & Shao-Horn, Y. Salicylate method for ammonia quantification in nitrogen electroreduction experiments: the correction of iron III interference. J. Electrochem. Soc. 167, 134519 (2020).

    CAS  Google Scholar 

  41. Giner-Sanz, J. J., Leverick, G. M., Giordano, L., Pérez-Herranz, V. & Shao-Horn, Y. Alkali metal salt interference on the salicylate method for quantifying ammonia from nitrogen reduction. ECS Adv. 1, 024501 (2022).

    Google Scholar 

  42. Krempl, K. et al. Quantitative operando detection of electro synthesized ammonia using mass spectrometry. ChemElectroChem 9, e202101713 (2022).

    CAS  Google Scholar 

  43. Kibsgaard, J., Nørskov, J. K. & Chorkendorff, I. The difficulty of proving electrochemical ammonia synthesis. ACS Energy Lett. 4, 2986–2988 (2019).

    CAS  Google Scholar 

  44. Cherepanov, P. V., Krebsz, M., Hodgetts, R. Y., Simonov, A. N. & MacFarlane, D. R. Understanding the factors determining the faradaic efficiency and rate of the lithium redox-mediated N2 reduction to ammonia. J. Phys. Chem. C 125, 11402–11410 (2021).

    CAS  Google Scholar 

  45. Lin, B., Wiesner, T. & Malmali, M. Performance of a small-scale Haber process: a techno-economic analysis. ACS Sustain. Chem. Eng. 8, 15517–15531 (2020).

    CAS  Google Scholar 

  46. Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    CAS  Google Scholar 

  47. Peled, E. Film forming reaction at the lithium/electrolyte interface. J. Power Sources 9, 253–266 (1983).

    CAS  Google Scholar 

  48. Peled, E. & Menkin, S. SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017).

    CAS  Google Scholar 

  49. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    CAS  Google Scholar 

  50. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS  Google Scholar 

  51. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    CAS  PubMed  Google Scholar 

  52. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS  PubMed  Google Scholar 

  53. Xu, K. Electrolytes, Interfaces and Interphases (Royal Society of Chemistry, 2023).

  54. Aurbach, D. et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50, 247–254 (2004).

    CAS  Google Scholar 

  55. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    CAS  Google Scholar 

  56. Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2022).

    Google Scholar 

  57. Kanamura, K., Tamura, H., Shiraishi, S. & Takehara, Z. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J. Electrochem. Soc. 142, 340–347 (1995).

    CAS  Google Scholar 

  58. Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2019).

    CAS  Google Scholar 

  59. Chang, W., Park, J. H., Dutta, N. S. & Arnold, C. B. Morphological and chemical mapping of columnar lithium metal. Chem. Mater. 32, 2803–2814 (2020).

    CAS  Google Scholar 

  60. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    CAS  PubMed  Google Scholar 

  61. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    CAS  PubMed  Google Scholar 

  62. Westhead, O. et al. The role of ion solvation in lithium mediated nitrogen reduction. J. Mater. Chem. A Mater. Energy Sustain. 11, 12746–12758 (2023).

    CAS  PubMed  Google Scholar 

  63. Westhead, O. et al. The origin of overpotential in lithium-mediated nitrogen reduction. Faraday Discuss. 243, 321–338 (2023).

    CAS  PubMed  Google Scholar 

  64. Sažinas, R. et al. Towards understanding of electrolyte degradation in lithium-mediated non-aqueous electrochemical ammonia synthesis with gas chromatography-mass spectrometry. RSC Adv. 11, 31487–31498 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Schwalbe, J. A. et al. A combined theory‐experiment analysis of the surface species in lithium‐mediated NH3 electrosynthesis. ChemElectroChem 7, 1542–1549 (2020).

    CAS  Google Scholar 

  66. Aurbach, D. et al. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources 68, 91–98 (1997).

    CAS  Google Scholar 

  67. Sažinas, R. et al. Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis. J. Phys. Chem. Lett. 13, 4605–4611 (2022).

    PubMed  PubMed Central  Google Scholar 

  68. Aurbach, D., Daroux, M. L., Faguy, P. W. & Yeager, E. Identification of surface films formed on lithium in dimethoxyethane and tetrahydrofuran solutions. J. Electrochem. Soc. 135, 1863 (1988).

    CAS  Google Scholar 

  69. Wang, E., Dey, S., Liu, T., Menkin, S. & Grey, C. P. Effects of atmospheric gases on Li metal cyclability and solid-electrolyte interphase formation. ACS Energy Lett. 5, 1088–1094 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Spry, M. et al. Water increases the Faradaic selectivity of Li-mediated nitrogen reduction. ACS Energy Lett. 8, 1230–1235 (2023).

    CAS  PubMed Central  Google Scholar 

  71. Cai, X. et al. Lithium-mediated electrochemical nitrogen reduction: mechanistic insights to enhance performance. iScience 24, 103105 (2021).

    CAS  PubMed Central  Google Scholar 

  72. Furukawa, T. & Hirakawa, Y. Basic experiment on lithium removal technique. In Proc. 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference 9–13 (2013).

  73. Lazouski, N. et al. Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction. ACS Catal. 12, 5197–5208 (2022).

    CAS  Google Scholar 

  74. Zhou, F. et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017).

    CAS  Google Scholar 

  75. Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    CAS  Google Scholar 

  76. Moshkovich, M., Gofer, Y. & Aurbach, D. Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc. 148, E155 (2001).

    CAS  Google Scholar 

  77. Blair, S. J. et al. Lithium-mediated electrochemical nitrogen reduction: tracking electrode-electrolyte interfaces via time-resolved neutron reflectometry. ACS Energy Lett. 7, 1939–1946 (2022).

    CAS  Google Scholar 

  78. Gibanel, F., López, M. C., Royo, F. M., Santafė, J. & Urieta, J. S. Solubility of nonpolar gases in tetrahydrofuran at 0 to 30 °C and 101.33 kPa partial pressure of gas. J. Solut. Chem. 22, 211–217 (1993).

    CAS  Google Scholar 

  79. Kang, C. S. M., Zhang, X. & MacFarlane, D. R. Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility. J. Phys. Chem. C 122, 24550–24558 (2018).

    CAS  Google Scholar 

  80. Kang, C. S. M., Zhang, X. & MacFarlane, D. R. High nitrogen gas solubility and physicochemical properties of [C4mpyr][eFAP]-fluorinated solvent mixtures. J. Phys. Chem. C 123, 21376–21385 (2019).

    CAS  Google Scholar 

  81. Littel, R. J., Versteeg, G. F. & Van Swaaij, W. P. M. Diffusivity measurements in some organic solvents by a gas-liquid diaphragm cell. J. Chem. Eng. Data 37, 42–45 (1992).

    CAS  Google Scholar 

  82. Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    CAS  Google Scholar 

  83. Wang, Y., Rogers, E. I. & Compton, R. G. The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. J. Electroanal. Chem. 648, 15–19 (2010).

    CAS  Google Scholar 

  84. Bard, A. J. & Faulkner, L. R. Electrochemical Methods (Wiley, 2011).

  85. Singh, A. R. et al. Strategies toward selective electrochemical ammonia synthesis. ACS Catal. 9, 8316–8324 (2019).

    CAS  Google Scholar 

  86. Kim, K., Chen, Y., Han, J.-I., Yoon, H. C. & Li, W. Lithium-mediated ammonia synthesis from water and nitrogen: a membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system. Green Chem. 21, 3839–3845 (2019).

    CAS  Google Scholar 

  87. Du, H.-L. et al. The chemistry of proton carriers in high-performance lithium-mediated ammonia electrosynthesis. Energy Environ. Sci. 16, 1082–1090 (2023).

    CAS  Google Scholar 

  88. Kim, K. et al. Electrochemical synthesis of ammonia from water and nitrogen: a lithium-mediated approach using lithium-ion conducting glass ceramics. ChemSusChem 11, 120–124 (2018).

    CAS  Google Scholar 

  89. Krempl, K., Pedersen, J. B., Kibsgaard, J., Vesborg, P. C. K. & Chorkendorff, I. Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis. Electrochem. Commun. 134, 107186 (2022).

    CAS  Google Scholar 

  90. Hodgetts, R. Y., Du, H.-L., Nguyen, T. D., MacFarlane, D. & Simonov, A. N. Electrocatalytic oxidation of hydrogen as an anode reaction for the Li-mediated N2 reduction to ammonia. ACS Catal. 12, 5231–5246 (2022).

    CAS  Google Scholar 

  91. Lobaccaro, P. et al. Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. Phys. Chem. Chem. Phys. 18, 26777–26785 (2016).

    CAS  PubMed  Google Scholar 

  92. Becker, R., Weber, K., Pfeiffer, T. V., van Kranendonk, J. & Schouten, K. J. A scalable high-throughput deposition and screening setup relevant to industrial electrocatalysis. Catalysts 10, 1165 (2020).

    CAS  Google Scholar 

  93. Maljuric, S., Jud, W., Kappe, C. O. & Cantillo, D. Translating batch electrochemistry to single-pass continuous flow conditions: an organic chemist’s guide. J. Flow Chem. 10, 181–190 (2020).

    CAS  Google Scholar 

  94. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    CAS  Google Scholar 

  95. Gomez, J. R. & Garzon, F. Preliminary economics for green ammonia synthesis via lithium mediated pathway. Int. J. Energy Res. 45, 13461–13470 (2021).

    CAS  Google Scholar 

  96. Lazouski, N. et al. Cost and performance targets for fully electrochemical ammonia production under flexible operation. ACS Energy Lett. 7, 2627–2633 (2022).

    CAS  Google Scholar 

  97. Li, K. et al. Increasing current density of Li-mediated ammonia synthesis with high surface area copper electrodes. ACS Energy Lett. 7, 36–41 (2021).

    CAS  Google Scholar 

  98. Tort, R. et al. Nonaqueous Li-mediated nitrogen reduction: taking control of potentials. ACS Energy Lett. 8, 1003–1009 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. LiNRR: meta-analysis of LiNRR literature (GitHub); https://github.com/Manthiram-Group/LiNRR

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation (grant no. 2204756). We gratefully acknowledge support from the Resnick Sustainability Institute. K.M. gratefully acknowledges support from the Sloan Foundation. W.C. acknowledges funding support from the Arnold and Mabel Beckman Foundation via a 2022 Arnold O. Beckman Postdoctoral Fellowship in Chemical Sciences. F.R. acknowledges funding support from the Independent Research Fund Denmark (DFF), case no. 0217-00234B. We also thank M. Yusov, C. Klein and G. Lee for productive and helpful feedback and discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.C. conducted the initial meta-analysis from literature sources, analysed the data and generated the figures. A.J. brought the manuscript to submission-ready completion with detailed edits. W.C. and A.J. led the majority of the work, with input from the whole group. F.R. helped decide our cell-naming convention. K.M. mentored, edited and financed the work. All authors contributed to manuscript proofreading.

Corresponding author

Correspondence to Karthish Manthiram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hoang-Long Du and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, W., Jain, A., Rezaie, F. et al. Lithium-mediated nitrogen reduction to ammonia via the catalytic solid–electrolyte interphase. Nat Catal 7, 231–241 (2024). https://doi.org/10.1038/s41929-024-01115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01115-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing