Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An electrochemical approach for designing thermochemical bimetallic nitrate hydrogenation catalysts

Abstract

Classically, catalytic promotion in bimetallic catalysts has been ascribed to atomic-scale cooperativity between metal constituents. For catalytic reactions that could involve charge transfer, electron and ion flow may engender bimetallic promotion without atomic-level connectivity. Here we examine this hypothesis in the context of nitrate hydrogenation, a reaction catalysed almost exclusively by bimetallic catalysts. On state-of-the-art PdCu/C, nitrate hydrogenation to nitrite proceeds via electrochemical coupling of hydrogen oxidation and nitrate reduction half-reactions; Pd catalyses the former, while Cu catalyses the latter. Using this mechanistic framework, we predict how different Pd:Cu ratios affect nitrate hydrogenation rates, and rationalize the catalytic activity observed in PtAg/C and Ru/C. Finally, by only promoting the electrochemical hydrogen oxidation reaction with Ni(OH)2, we synthesize PdNi(OH)2Cu/C catalysts with comparable nitrate hydrogenation activity to our best-performing PdCu/C using fivefold less Pd. This work provides an alternative strategy for designing alloy catalysts for thermochemical redox transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical polarization data for PdCu/C predicts OCP during catalysis.
Fig. 2: Nitrite is produced quantitatively in alkaline nitrate hydrogenation.
Fig. 3: Electrochemical polarization data for PdCu/C predicts reaction rate.
Fig. 4: Polarization data for Pd/C and Cu/C reveals orthogonal electrochemical reactivity.
Fig. 5: Pd/C and Cu/C polarization data directly predict PdCu/C hydrogenation rates.
Fig. 6: Targeted improvement of HOR via Ni(OH)2 addition improves hydrogenation rate.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the published article (and its Supplementary Information), with raw source data (cyclic voltammetry, potentiometry and rate measurements) available in an accompanying source data file, or available from the authors on reasonable request. Source data are provided with this paper.

References

  1. Park, K.-W. et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106, 1869–1877 (2002).

    CAS  Google Scholar 

  2. Qin, L. et al. Cooperative catalytic performance of bimetallic Ni–Au nanocatalyst for highly efficient hydrogenation of nitroaromatics and corresponding mechanism insight. Appl. Catal. B 259, 118035 (2019).

    CAS  Google Scholar 

  3. Muneeb, O. et al. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper. Electrochim. Acta 218, 133–139 (2016).

    CAS  Google Scholar 

  4. Wang, H. et al. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer–Tropsch synthesis. J. Am. Chem. Soc. 135, 4149–4158 (2013).

    CAS  PubMed  Google Scholar 

  5. Lortie, M., Isaifan, R., Liu, Y. & Mommers, S. Synthesis of CuNi/C and CuNi/γ-Al2O3 catalysts for the reverse water gas shift reaction. Int. J. Chem. Eng. 2015, 1–9 (2015).

    Google Scholar 

  6. Li, H., Shin, K. & Henkelman, G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys. 149, 174705 (2018).

    PubMed  Google Scholar 

  7. Li, H. et al. Oxygen reduction reaction on classically immiscible bimetallics: a case study of RhAu. J. Phys. Chem. C 122, 2712–2716 (2018).

    CAS  Google Scholar 

  8. Takehiro, N., Liu, P., Bergbreiter, A., Nørskov, J. K. & Behm, R. J. Hydrogen adsorption on bimetallic PdAu(111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Phys. Chem. Chem. Phys. 16, 23930–23943 (2014).

    CAS  PubMed  Google Scholar 

  9. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Google Scholar 

  10. Zhang, L. & Henkelman, G. Tuning the oxygen reduction activity of Pd shell nanoparticles with random alloy cores. J. Phys. Chem. C 116, 20860–20865 (2012).

    CAS  Google Scholar 

  11. García-Muelas, R. & López, N. Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 4687 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Yao, Y. & Goodman, D. W. Direct evidence of hydrogen spillover from Ni to Cu on Ni–Cu bimetallic catalysts. J. Mol. Catal. Chem. 383–384, 239–242 (2014).

    Google Scholar 

  13. Fischer, A. F. & Iglesia, E. The nature of “hydrogen spillover”: site proximity effects and gaseous intermediates in hydrogenation reactions mediated by inhibitor-scavenging mechanisms. J. Catal. 420, 68–88 (2023).

    CAS  Google Scholar 

  14. Hörold, S., Tacke, T. & Vorlop, K. Catalytical removal of nitrate and nitrite from drinking water: 1. Screening for hydrogenation catalysts and influence of reaction conditions on activity and selectivity. J. Environ. Technol. 14, 931–939 (1993).

    Google Scholar 

  15. Wang, Z., Richards, D. & Singh, N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal. Sci. Technol. 11, 705–725 (2021).

    CAS  Google Scholar 

  16. Pintar, A., Batista, J., Levec, J. & Kajiuchi, T. Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Appl. Catal. B 11, 81–98 (1996).

    CAS  Google Scholar 

  17. Martínez, J., Ortiz, A. & Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B 207, 42–59 (2017).

    Google Scholar 

  18. Xie, Y., Cao, H., Li, Y., Zhang, Y. & Crittenden, J. C. Highly selective PdCu/amorphous silica–alumina (ASA) catalysts for groundwater denitration. Environ. Sci. Technol. 45, 4066–4072 (2011).

    CAS  PubMed  Google Scholar 

  19. Gauthard, F., Epron, F. & Barbier, J. Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water: effect of copper, silver, or gold addition. J. Catal. 220, 182–191 (2003).

    CAS  Google Scholar 

  20. Pintar, A., Batista, J. & Muševič, I. Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Appl. Catal. B 52, 49–60 (2004).

    CAS  Google Scholar 

  21. Prüsse, U. & Vorlop, K. D. Supported bimetallic palladium catalysts for water-phase nitrate reduction. J. Mol. Catal. Chem. 173, 313–328 (2001).

    Google Scholar 

  22. Sá, J. & Vinek, H. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. Appl. Catal. B 57, 247–256 (2005).

    Google Scholar 

  23. Cai, F. et al. Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation. Catalysts 6, 96 (2016).

    Google Scholar 

  24. Wang, Z., Ortiz, E. M., Goldsmith, B. R. & Singh, N. Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinum–ruthenium alloys. Catal. Sci. Technol. 11, 7098–7109 (2021).

    CAS  Google Scholar 

  25. Ilinich, O. M., Gribov, E. N. & Simonov, P. A. Water denitrification over catalytic membranes: hydrogen spillover and catalytic activity of macroporous membranes loaded with Pd and Cu. Catal. Today 82, 49–56 (2003).

    CAS  Google Scholar 

  26. Yoshinaga, Y., Akita, T., Mikami, I. & Okuhara, T. Hydrogenation of nitrate in water to nitrogen over Pd–Cu supported on active carbon. J. Catal. 207, 37–45 (2002).

    CAS  Google Scholar 

  27. Keresszegi, C., Bürgi, T., Mallat, T. & Baiker, A. On the role of oxygen in the liquid-phase aerobic oxidation of alcohols on palladium. J. Catal. 211, 244–251 (2002).

    CAS  Google Scholar 

  28. Mallat, T. & Baiker, A. Catalyst potential measurement: a valuable tool for understanding and controlling liquid phase redox reactions. Top. Catal. 8, 115–124 (1999).

    CAS  Google Scholar 

  29. An, H., Sun, G., Hülsey, M. J., Sautet, P. & Yan, N. Demonstrating the electron–proton-transfer mechanism of aqueous phase 4-nitrophenol hydrogenation using unbiased electrochemical cells. ACS Catal. 12, 15021–15027 (2022).

    CAS  Google Scholar 

  30. Fortunato, G. V. et al. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nat. Commun. 13, 1973 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021).

    CAS  Google Scholar 

  32. Adams, J. S., Kromer, M. L., Rodríguez-López, J. & Flaherty, D. W. Unifying concepts in electro- and thermocatalysis toward hydrogen peroxide production. J. Am. Chem. Soc. 143, 7940–7957 (2021).

    CAS  PubMed  Google Scholar 

  33. Yamanaka, I., Onizawa, T., Takenaka, S. & Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem. Int. Ed. 42, 3653–3655 (2003).

    CAS  Google Scholar 

  34. Howland, W. C., Gerken, J. B., Stahl, S. S. & Surendranath, Y. Thermal hydroquinone oxidation on Co/N-doped carbon proceeds by a band-mediated electrochemical mechanism. J. Am. Chem. Soc. 144, 11253–11262 (2022).

    CAS  PubMed  Google Scholar 

  35. Zhao, X. et al. Chemo-bio catalysis using carbon supports: application in H2-driven cofactor recycling. Chem. Sci. 12, 8105–8114 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, X. et al. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603, 271–275 (2022).

    CAS  PubMed  Google Scholar 

  37. Liu, H. et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 11, 8431–8442 (2021).

    CAS  Google Scholar 

  38. Liu, M. J. et al. Catalytic performance and near-surface X-ray characterization of titanium hydride electrodes for the electrochemical nitrate reduction reaction. J. Am. Chem. Soc. 144, 5739–5744 (2022).

    CAS  PubMed  Google Scholar 

  39. Teng, W. et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ. Sci. Technol. 52, 230–236 (2018).

    CAS  PubMed  Google Scholar 

  40. Li, J. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142, 7036–7046 (2020).

    CAS  PubMed  Google Scholar 

  41. Butcher, D. P. & Gewirth, A. A. Nitrate reduction pathways on Cu single crystal surfaces: effect of oxide and Cl. Nano Energy 29, 457–465 (2016).

    CAS  Google Scholar 

  42. Power, G. P., Staunton, W. P. & Ritchie, I. M. Mixed potential measurements in the elucidation of corrosion mechanisms—II. Some measurements. Electrochim. Acta 27, 165–169 (1982).

    CAS  Google Scholar 

  43. Wagner, C. & Traud, W. Über die Deutung von Korrosionsvorgängen durch Überlagerung von elektrochemischen Teilvorgängen und über die Potentialbildung an Mischelektroden. Z. Elektrochem. Angew. Phys. Chem. 44, 391–402 (1938).

    CAS  Google Scholar 

  44. Vorlop, K.-D. & Prüsse, U. in Environmental Catalysis Vol. 1 (eds Janssen, F. J. J. G. & van Santen, R. A.) 195–218 (Imperial College Press, 1999).

  45. Pintar, A. & Batista, J. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors. J. Hazard. Mater. 149, 387–398 (2007).

    CAS  PubMed  Google Scholar 

  46. Zhao, Y. et al. Electrochemical screening of Au/Pt catalysts for the thermocatalytic synthesis of hydrogen peroxide based on their oxygen reduction and hydrogen oxidation activities probed via voltammetric scanning electrochemical microscopy. ACS Sustain. Chem. Eng. 10, 17207–17220 (2022).

    CAS  Google Scholar 

  47. Precious and industrial metals. Bloomberg https://www.bloomberg.com/markets/commodities/futures/metals (2023).

  48. Ohyama, J., Kumada, D. & Satsuma, A. Improved hydrogen oxidation reaction under alkaline conditions by ruthenium–iridium alloyed nanoparticles. J. Mater. Chem. A 4, 15980–15985 (2016).

    CAS  Google Scholar 

  49. Sun, W. et al. Elevated N2 selectivity in catalytic denitrification by amino group-assisted in-situ buffering effect of NH2–SiO2 supported PdCu bimetallic nanocatalyst. Chem. Eng. J. 390, 124617 (2020).

    CAS  Google Scholar 

  50. Wang, K.-W. et al. Promotion of PdCu/C catalysts for ethanol oxidation in alkaline solution by SnO2 modifier. ChemCatChem 4, 1154–1161 (2012).

    CAS  Google Scholar 

  51. Bansode, A., Tidona, B., Rohr, P. Rvon & Urakawa, A. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure. Catal. Sci. Technol. 3, 767–778 (2013).

    CAS  Google Scholar 

  52. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    CAS  Google Scholar 

  53. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt Interfaces. Science 334, 1256–1260 (2011).

    CAS  Google Scholar 

  54. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012).

    CAS  Google Scholar 

  55. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    CAS  Google Scholar 

  56. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    CAS  Google Scholar 

  57. Tang, B. Y., Bisbey, R. P., Lodaya, K. M., Toh, W. L. & Surendranath, Y. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. 6, 339–350 (2023).

    CAS  Google Scholar 

  58. Zhao, F., Xin, J., Yuan, M., Wang, L. & Wang, X. A critical review of existing mechanisms and strategies to enhance N2 selectivity in groundwater nitrate reduction. Water Res. 209, 117889 (2022).

    CAS  PubMed  Google Scholar 

  59. Tokazhanov, G., Ramazanova, E., Hamid, S., Bae, S. & Lee, W. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: a review. Chem. Eng. J. 384, 123252 (2020).

    CAS  Google Scholar 

  60. Ras, E.-J. & Rothenberg, G. Heterogeneous catalyst discovery using 21st century tools: a tutorial. RSC Adv. 4, 5963–5974 (2014).

    CAS  Google Scholar 

  61. Fan, J. et al. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 10, 13560–13583 (2020).

    CAS  Google Scholar 

  62. Li, Z., Wang, S., Chin, W. S., Achenie, L. E. & Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 5, 24131–24138 (2017).

    CAS  Google Scholar 

  63. Sun, Y., Wei, J., Zhang, J. P. & Yang, G. Optimization using response surface methodology and kinetic study of Fischer–Tropsch synthesis using SiO2 supported bimetallic Co–Ni catalyst. J. Nat. Gas. Sci. Eng. 28, 173–183 (2016).

    CAS  Google Scholar 

  64. Udumula, V. et al. Dual optimization approach to bimetallic nanoparticle catalysis: impact of M1/M2 ratio and supporting polymer structure on reactivity. ACS Catal. 5, 3457–3462 (2015).

    CAS  Google Scholar 

  65. Muneeb, O., Do, E., Boyd, D., Perez, J. & Haan, J. L. PdCu/C anode catalysts for the alkaline ascorbate fuel cell. Appl. Energy 235, 473–479 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Wesley, W. Howland, M. Huelsey, A. Chu, A. Borisov, H.-X. Wang, D. Harraz, N. Razdan, R. Zeng and the Surendranath Lab for helpful discussions and manuscript feedback. This work was primarily supported by the Air Force Office of Scientific Research (AFOSR) under award number FA9550-20-1-0291. K.M.L., S.W. and K.S.W. acknowledge support from the National Science Foundation Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.M.L., B.Y.T., R.P.B., J.R. and Y.S. conceived the research and developed experiments. K.M.L. and B.Y.T. conducted all electrochemical and thermochemical experiments. K.M.L., B.Y.T., S.W. and K.S.W. conducted catalyst characterization measurements. W.L.T. 3D printed prototype cell designs for experiments. K.M.L., B.Y.T. and Y.S. wrote the manuscript with input from all authors. Y.R.-L. and Y.S. provided laboratory space and instrumentation.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Bin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Equations 1 and 2, Tables 1–4 and methods.

Source data

Source Data Fig. 1–6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodaya, K.M., Tang, B.Y., Bisbey, R.P. et al. An electrochemical approach for designing thermochemical bimetallic nitrate hydrogenation catalysts. Nat Catal 7, 262–272 (2024). https://doi.org/10.1038/s41929-023-01094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01094-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing