Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic engineering of yeast for the production of carbohydrate-derived foods and chemicals from C1–3 molecules

Abstract

The increase in population-related and environmental issues has emphasized the need for more efficient and sustainable production strategies for foods and chemicals. Carbohydrates are macronutrients sourced from crops and undergone transformation into various products ranging from foods to chemicals. Continuous efforts have led to the identification of a promising hybrid system that couples the electrochemical reduction of CO2 to intermediates containing one to three carbons (C1–3) with the transformation of the intermediates using engineered microorganisms into valuable products. Here we use yeast to transform C1–3 substrates into glucose and structurally tailored glucose derivatives, such as the sugar alcohol myo-inositol, the amino monosaccharide glucosamine, the disaccharide sucrose and the polysaccharide starch. By metabolic rewiring and mitigation of glucose repression, the titre of glucose and sucrose reached dozens of grams per litre. These results provide directions for microbial sugar-derived foods and chemicals production from renewable reduced CO2-based feedstocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roadmap for production of glucose-derived chemicals from renewable electricity-driven substrates.
Fig. 2: Biorefinery of renewable raw materials from C1–3 substrates.
Fig. 3: Production of monosaccharide derivatives.
Fig. 4: Production of oligosaccharide and polysaccharide derivatives.
Fig. 5: Metabolic rewiring of S. cerevisiae for glucose overproduction.
Fig. 6: Fed-batch fermentation of C1–3 substrates by engineered strains.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Pastor, A. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).

    Article  Google Scholar 

  2. Eibl, R. et al. Cellular agriculture: opportunities and challenges. Annu. Rev. Food Sci. 12, 51–73 (2021).

    Article  CAS  Google Scholar 

  3. Cestellos-Blanco, S. et al. Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. iScience 24, 102952 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sellers, P. et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271, 1402–1406 (1996).

    Article  CAS  Google Scholar 

  5. Liu, Y. et al. Biofuels for a sustainable future. Cell 184, 1636–1647 (2021).

    Article  PubMed  CAS  Google Scholar 

  6. Roy, S., Cherevotan, A. & Peter, S. C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett. 3, 1938–1966 (2018).

    Article  CAS  Google Scholar 

  7. Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    Article  CAS  Google Scholar 

  8. Jia, S. et al. Electrochemical transformation of CO2 to value-added chemicals and fuels. CCS Chem. 4, 3213–3229 (2022).

    Article  CAS  Google Scholar 

  9. Grim, R. G. et al. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ. Sci. 13, 472–494 (2020).

    Article  CAS  Google Scholar 

  10. Pachaiappan, R. et al. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem. Eng. Res. Des. 177, 304–320 (2022).

    Article  CAS  Google Scholar 

  11. Bierbaumer, S. et al. Enzymatic conversion of CO2: from natural to artificial utilization. Chem. Rev. 123, 5702–5754 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yuan, L. et al. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem. Int. Ed. 60, 21150–21172 (2021).

    Article  CAS  Google Scholar 

  13. Song, X. et al. Towards sustainable CO2 electrochemical transformation via coupling design strategy. Mater. Today Sustain. 19, 100179 (2022).

    Article  Google Scholar 

  14. Davidson, E. A. Carbohydrate. Encyclopedia Britannica https://www.britannica.com/science/carbohydrate (2023).

  15. Farrán, A. et al. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev. 115, 6811–6853 (2015).

    Article  PubMed  Google Scholar 

  16. Martíneza, J. B. G. et al. Chemical synthesis of food from CO2 for space missions and food resilience. J. CO2 Util. 53, 101726 (2021).

    Article  Google Scholar 

  17. Harbaugh, J. NASA awards $750,000 in competition to convert CO2 into sugar. https://www.nasa.gov/directorates/spacetech/centennial_challenges/75K-awarded-in-competition-to-convert-carbon-dioxide-into-sugar.html (2021).

  18. Cestellos-Blanco, S. et al. Toward abiotic sugar synthesis from CO2 electrolysis. Joule 6, 2304–2323 (2022).

    Article  CAS  Google Scholar 

  19. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  PubMed  CAS  Google Scholar 

  20. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).

    Article  CAS  Google Scholar 

  21. Parapouli, M. et al. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 6, 1–31 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Spohner, S. C. et al. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J. Biotechnol. 202, 118–134 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Kayikci, Ö. & Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 15, fov068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  PubMed  CAS  Google Scholar 

  25. Peng, C. et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pronk, J. T. et al. Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis. Microbiology 140, 717–722 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. Carnegie, D. & Ramsay, J. A. Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres. Biodegradation 20, 551–558 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Pandit, A. V., Harrison, E. & Mahadevan, R. Engineering Escherichia coli for the utilization of ethylene glycol. Microb. Cell. Fact. 20, 22 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Snoeckx, R. & Bogaerts, A. Plasma technology—a novel solution for CO2 conversion? Chem. Soc. Rev. 46, 5805–5863 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article  CAS  Google Scholar 

  31. Lin, Y. et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat. Commun. 14, 3575 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Brown, M. E., Mukhopadhyay, A. & Keasling, J. D. Engineering bacteria to catabolize the carbonaceous component of sarin: teaching E. coli to eat isopropanol. ACS Synth. Biol. 5, 1485–1496 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Hausinger, R. P. New insights into acetone metabolism. J. Bacteriol. 189, 671–673 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. Pfeiffer, M., Wildberger, P. & Nidetzky, B. Yihx-encoded haloacid dehalogenase-like phosphatase HAD4 from Escherichia coli is a specific α-d-glucose 1-phosphate hydrolase useful for substrate-selective sugar phosphate transformations. J. Mol. Catal. B 110, 39–46 (2014).

    Article  CAS  Google Scholar 

  35. Somoza-Tornos, A. et al. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review. iScience 24, 102813 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jouny, M. et al. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  37. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  38. Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Arán-Ais, R. M. et al. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).

    Article  Google Scholar 

  40. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  41. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  42. Gonzalez-Uarquin, F., Rodehutscord, M. & Huber, K. Myo-inositol: its metabolism and potential implications for poultry nutrition—a review. Poult. Sci. 99, 893–905 (2020).

    Article  PubMed  CAS  Google Scholar 

  43. Li, Y. et al. Production of myo-inositol: recent advance and prospective. Biotechnol. Appl. Biochem. 69, 1101–1111 (2022).

    Article  PubMed  CAS  Google Scholar 

  44. Tang, E. et al. Synergetic utilization of glucose and glycerol for efficient myo-inositol biosynthesis. Biotechnol. Bioeng. 117, 1247–1252 (2020).

    Article  PubMed  CAS  Google Scholar 

  45. Zhang, Q. et al. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism. Microb. Cell. Fact. 21, 112 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, L. et al. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl. Microbiol. Biotechnol. 97, 6149–6158 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Shintani, T. Food industrial production of monosaccharides using microbial, enzymatic, and chemical methods. Fermentation 5, 47 (2019).

    Article  CAS  Google Scholar 

  48. Yin, W. et al. Metabolic engineering of E. coli for xylose production from glucose as the sole carbon source. ACS Synth. Biol. 10, 2266–2275 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Godinho, L. M. & de Sá-Nogueira, I. Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis. FEBS J. 278, 2511–2524 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Marques, W. L. et al. Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism. FEMS Yeast Res. 17, fox006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sakulsingharoj, C. et al. Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci. 167, 1323–1333 (2004).

    Article  CAS  Google Scholar 

  52. Zhou, Y., Grof, C. P. L. & Patrick, J. W. Proof of concept for a novel functional screening system for plant sucrose effluxers. J. Microbiol. Methods 1, e5 (2014).

    Google Scholar 

  53. Jiang, T., Duan, Q., Zhu, J., Liu, H. & Yu, L. Starch-based biodegradable materials: challenges and opportunities. Ind. Eng. Chem. Res. 3, 8–18 (2020).

    Google Scholar 

  54. Keeling, P. L. & Myers, A. M. Biochemistry and genetics of starch synthesis. Annu Rev. Food Sci. Technol. 1, 271–303 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. Pfister, B. et al. Recreating the synthesis of starch granules in yeast. eLife 5, e15552 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu, X. et al. Fusion of cellobiose phosphorylase and potato alpha-glucan phosphorylase facilitates substrate channeling for enzymatic conversion of cellobiose to starch. Prep. Biochem. Biotechnol. 52, 611–617 (2021).

    Article  PubMed  Google Scholar 

  57. You, C. et al. Enzymatic transformation of nonfood biomass to starch. Proc. Natl Acad. Sci. USA 110, 7182–7187 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Peng, B., Wood, R. J., Nielsen, L. K. & Vickers, C. E. An expanded heterologous GAL promoter collection for diauxie-inducible expression in Saccharomyces cerevisiae. ACS Synth. Biol. 7, 748–751 (2018).

    Article  PubMed  CAS  Google Scholar 

  59. Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 110, 7182–7187 (2013).

    Google Scholar 

  60. Hers, H. G. & Hue, L. Gluconeogenesis and related aspects of glycolysis. Annu. Rev. Biochem. 52, 617–653 (1983).

    Article  PubMed  CAS  Google Scholar 

  61. Flores, C.-L. & Gancedo, C. Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source. Sci. Rep. 8, 16949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Santangelo, G. M. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 253–282 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Leech, A., Nath, N., McCartney, R. R. & Schmidt, M. C. Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot. Cell 2, 265–273 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Dombek, K. M., Kacherovsky, N. & Young, E. T. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae. J. Biol. Chem. 279, 39165–39174 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. Rubenstein, E. M. et al. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J. Biol. Chem. 283, 222–230 (2008).

    Article  PubMed  CAS  Google Scholar 

  66. Palomino, A., Herrero, P. & Moreno, F. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res. 34, 1427–1438 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rolland, F., Winderickx, J. & Thevelein, J. M. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2, 183–201 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. Nishimura, A. et al. The Cdc25/Ras/cAMP-dependent protein kinase A signaling pathway regulates proline utilization in wine yeast Saccharomyces cerevisiae under a wine fermentation model. Biosci. Biotechnol. Biochem. 86, 1318–1326 (2022).

    Article  PubMed  Google Scholar 

  69. Wang, Y. et al. Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol. 2, e128 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ma, P., Wera, S., Van Dijck, P. & Thevelein, J. M. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol. Cell. Biol. 10, 91–104 (1999).

    Article  CAS  Google Scholar 

  71. Deng, M. D. et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 7, 201–214 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. Yin, Z., Hatton, L. & Brown, A. J. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Mol. Microbiol. 35, 553–565 (2000).

    Article  PubMed  CAS  Google Scholar 

  73. Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Molitor, B., Mishra, A. & Angenent, L. T. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy Environ. Sci. 12, 3515–3521 (2019).

    Article  CAS  Google Scholar 

  75. Bertels, L. K., Fernández Murillo, L. & Heinisch, J. J. The pentose phosphate pathway in yeasts-more than a poor cousin of glycolysis. Biomolecules 11, 725 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wong, D. W. S. Food Enzymes: Structure and Mechanism Ch. 13 (Springer, 1995).

  77. Sarthy, A. V. et al. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. 53, 1996–2000 (1987).

    Article  CAS  Google Scholar 

  78. Gancedo, J. M. & Gancedo, C. Catabolite repression mutants of yeast. FEMS Microbiol. Rev. 1, 179–187 (1986).

    Google Scholar 

  79. Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517 (1992).

    Article  PubMed  CAS  Google Scholar 

  80. Yu, T. et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 15587 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mans, R. et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15, fov004 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gassler, T., Heistinger, L., Mattanovich, D., Gasser, B. & Prielhofer, R. CRISPR/Cas9-mediated homology-directed genome editing in Pichia pastoris. Methods Mol. Biol. 1923, 211–225 (2019).

    Article  PubMed  CAS  Google Scholar 

  83. Lin-Cereghino, J. et al. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques 38, 44 (2005). 46, 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. de Lima, P. B. A. et al. Novel homologous lactate transporter improves l-lactic acid production from glycerol in recombinant strains of Pichia pastoris. Microb. Cell Fact. 15, 158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Du, W., Liang, F., Duan, Y., Tan, X. & Lu, X. Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng. 19, 17–25 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (grant no. 2020YFA0907800 to T.Y.), the National Natural Science Foundation of China (grant no. 32071416 to T.Y. and 22308369 to W.C.), the Shenzhen Institute of Synthetic Biology Scientific Research Program (grant no. JCHZ20200003 to T.Y.), Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines (grant no. ZDSYS20210623091810032 to T.Y.), Key-Area Research and Development Program of Guangdong Province (grant no. 2022B1111080005 to T.Y.), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB0480000 to T.Y.), the National Key Research and Development Program of China (grant no. 2021YFA0911000 to T.Y.), CAS Project for Young Scientists in Basic Research (YSBR-051 to J.Z.), the China Postdoctoral Science Foundation (grant no. 2020M682973 to S.G.) and Guangdong Basic and Applied Basic Research Foundation (grant no. 2020A1515110927 to S.G.). We acknowledge the related fundings supported by China Merchants Research Institute of Advanced Technology Company Limited and China BlueChemical Ltd. We acknowledge the Shenzhen Infrastructure for Synthetic Biology for instrument support and technical assistance with plasmid construction. We thank X. Zhang and L. Xia for critical discussion, and the SIAT Mass Spectrometry Infrastructure for assistance with metabolite analysis.

Author information

Authors and Affiliations

Authors

Contributions

T.Y. and J.D.K. conceived this study. H.T., L.W. and S.G. designed and performed most of the experiments, analysed the data and drafted the manuscript. W.M., X.W. and J.S. assisted with the experiments and products detection. W.C. assisted with data analysis and interpretation. M.W., Q.Z., X.L. and J.Z. contributed to the manuscript revision. T.Y., J.D.K. and M.H. revised the manuscript. All authors revised and approved the manuscript.

Corresponding authors

Correspondence to Jay D. Keasling or Tao Yu.

Ethics declarations

Competing interests

J.D.K. has a financial interest in Amyris, Lygos, Demetrix, Napigen, Maple Bio, Apertor Labs, Zero Acre Farms, Berkeley Yeast and Ansa Biotechnology. X.L. has a financial interest in Demetrix and Synceres. All other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yong-Cheol Park, Rodrigo Ledesma-Amaro and Tianwei Tan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1-–5, note and references.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Wu, L., Guo, S. et al. Metabolic engineering of yeast for the production of carbohydrate-derived foods and chemicals from C1–3 molecules. Nat Catal 7, 21–34 (2024). https://doi.org/10.1038/s41929-023-01063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01063-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research