Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylation

Abstract

State-of-the-art non-natural photoenzymatic catalysis typically relies on either ultraviolet light activation or the formation of electron donor–acceptor complexes. Inspired by nature, herein we develop a biocatalytic scheme based on direct visible-light excitation of flavoprotein to achieve stereocontrolled intermolecular radical hydroarylation of alkenes with electron-rich arenes. Following visible-light activation, flavin-dependent ene-reductases—which naturally catalyse the two-electron reduction of activated alkenes—are repurposed to trigger single-electron oxidation of arenes and afford C(sp2)–C(sp3) bond-forming products in a redox-neutral and enantiodivergent fashion while both enantiomers are obtained with different enzymes. Experiments and computational simulations demonstrate that the reaction is initiated from the single-electron oxidation of substrate by the direct visible-light-excited flavoprotein, and explain the origin of enantioselectivity in this radical hydroarylation that is otherwise notoriously challenging to achieve by chemocatalysis. This work expands the repertoire of photoenzymatic catalysis and will stimulate the development of further biotransformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nature-inspired development of photoenzymatic hydroarylation.
Fig. 2: Designed catalytic cycle.
Fig. 3: Substrate scope of biocatalytic stereodivergent radical hydroarylation.
Fig. 4: Mechanistic experiments.
Fig. 5: Computational studies of photoenzymatic hydroarylation by OYE1_F296G.

Similar content being viewed by others

Data availability

Data relating to the materials and methods, experimental procedures, mechanistic studies and computational calculations, HPLC spectra and NMR spectra are available in the Supplementary Information or from the authors on reasonable request. The atomic coordinates of the optimized computational models are available in the Supplementary Data. The configurations of molecular dynamics simulations have been deposited in GitHub (https://github.com/fpikachu96/OYE1-GluER). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition no. CCDC 2226701 (3aa). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  2. Hughes, D. L. Highlights of the recent patent literature-focus on biocatalysis innovation. Org. Process Res. Dev. 26, 1878–1899 (2022).

    Article  CAS  Google Scholar 

  3. Winkler, C. K., Schrittwieser, J. H. & Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci. 7, 55–71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).

    Article  CAS  Google Scholar 

  5. Reetz, M. Making enzymes suitable for organic chemistry by rational protein design. ChemBioChem 23, e202200049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fasan, R. et al. Biocatalytic strategy for construction of sp3-rich polycyclic compounds from directed evolution and computational modeling. Preprint available at https://doi.org/10.21203/rs.3.rs-1639676/v1

  8. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)−H azidation. Science 376, 869–874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin-streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, J. et al. Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat. Chem. 13, 1186–1191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stephenson, C. R. J., Yoon, T. P. & MacMillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry (Wiley-VCH, 2018).

  13. Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. Acc. Chem. Res. 55, 1087–1096 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Sorigue, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357, 903–907 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Sorigue, D. et al. Mechanism and dynamics of fatty acid photodecarboxylase. Science 372, eabd5687 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Amer, M. et al. Low carbon strategies for sustainable bio-alkane gas production and renewable energy. Energy Environ. Sci. 13, 1818–1831 (2020).

    Article  CAS  Google Scholar 

  17. Litman, Z. C., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X. et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat. Chem. 10, 1201–1206 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, N. et al. Enantioselective [2 + 2]-cycloadditions with triplet photoenzymes. Nature 611, 715–720 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Trimble, J. S. et al. A designed photoenzyme for enantioselective [2+2] cycloadditions. Nature 611, 709–714 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor-acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Fu, H. et al. An asymmetric sp3sp3 cross-electrophile coupling using ‘ene’-reductases. Nature 610, 302–307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  Google Scholar 

  28. Peng, Y. et al. Photoinduced promiscuity of cyclohexanone monooxygenase for the enantioselective synthesis of α-fluoroketones. Angew. Chem. Int. Ed. 61, e202211199 (2022).

  29. Duan, X. et al. A photoenzymatic strategy for radical-mediated stereoselective hydroalkylation with diazo compounds. Angew. Chem. Int. Ed. 62, e202214135 (2023).

  30. De Angelis, M., Iazzetti, A., Serraiocco, A. & Ciogli, A. Asymmetric hydroarylation reactions catalyzed by transition metals: last 10 years in a mini review. Catalysts 12, 1289 (2022).

    Article  Google Scholar 

  31. Zhang, P., Tsuji, N., Ouyang, J. & List, B. Strong and confined acids catalyze asymmetric intramolecular hydroarylations of unactivated olefins with indoles. J. Am. Chem. Soc. 143, 675–680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, B. H., Du, Y. D. & Shu, W. Organophotocatalytic regioselective C-H alkylation of electron-rich arenes using activated and unactivated alkenes. Angew. Chem. Int. Ed. 61, e202200773 (2022).

  33. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Massey, V., Stankovich, M. & Hemmerich, P. Light-mediated reduction of flavoproteins with flavins as catalysts. Biochemistry 17, 1–8 (1978).

    Article  CAS  PubMed  Google Scholar 

  35. Zhuang, B., Ramodiharilafy, R., Liebl, U., Aleksandrov, A. & Vos, M. H. Ultrafast photooxidation of protein-bound anionic flavin radicals. Proc. Natl Acad. Sci. USA 119, e2118924119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toogood, H. S. & Scrutton, N. S. Discovery, characterisation, engineering and applications of ene-reductases for industrial biocatalysis. ACS Catal. 8, 3532–3549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar Roy, T., Sreedharan, R., Ghosh, P., Gandhi, T. & Maiti, D. Ene-reductase: a multifaceted biocatalyst in organic synthesis. Chemistry 28, e202103949 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Stewart, R. C. & Massey, V. Potentiometric studies of native and flavin-substituted old yellow enzyme. J. Biol. Chem. 260, 13639–13647 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, H.-C. & Swenson, R. P. Effect of the insertion of a glycine residue into the loop spanning residues 536−541 on the semiquinone state and redox properties of the flavin mononucleotide-binding domain of flavocytochrome P450BM-3 from Bacillus megaterium. Biochemistry 47, 13788–13799 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Case, D. A. et al. AMBER 2018 (Univ. of California, 2018).

  41. Metz, S., Kästner, J., Sokol, A. A., Keal, T. W. & Sherwood, P. ChemShell—a modular software package for QM/MM simulations. WIREs Comput. Mol. Sci. 4, 101–110 (2014).

    Article  CAS  Google Scholar 

  42. Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162, 165–169 (1989).

    Article  CAS  Google Scholar 

  43. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Jiao (Peking University), E. Meggers (Philipps University Marburg) and H. Zhao (UIUC) for insightful discussions. This work was supported by the National Key Research and Development Program of China (nos. 2022YFA0913000 to X.H., 2019YFA0405600 to L.Y. and 2019YFA0706900 to C.T.), the National Natural Science Foundation of China (nos. 22277053 to X.H., 22121001 to B.W. and 21927814 and 21825703 to C.T.), the Natural Science Foundation of Jiangsu Province (no. BK20220760 to X.H.) and the Youth Innovation Promotion Association CAS (no. 2022455 to L.Y.). A portion of this work was performed at Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. developed the reactions and performed the majority of synthetic experiments. Z.X., B.C. and F.S. assisted with synthetic experiments and mechanistic investigations. F.L. created mutations. J.F. and B.W. conducted computational studies. A.L. and L.Y. carried out EPR measurements and analysis under the supervision of C.T. Y.Z. performed X-ray crystal structure analysis. X.H., B.W. and C.T. wrote the paper with input from all authors. X.H. coordinated and conceived the project.

Corresponding authors

Correspondence to Changlin Tian, Binju Wang or Xiaoqiang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jian Xu, Kai Chen, Wei Shu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Tables 1–17 and Methods.

Reporting Summary

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Feng, J., Yu, L. et al. Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylation. Nat Catal 6, 996–1004 (2023). https://doi.org/10.1038/s41929-023-01024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01024-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing