Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis

Abstract

Photoenzymatic catalysts are attractive for stereoselective radical reactions because the transformation occurs within tunable enzyme active sites. When using flavoproteins for non-natural photoenzymatic reactions, reductive mechanisms are often used for radical initiation. Oxidative mechanisms for radical formation would enable abundant functional groups, such as amines and carboxylic acids, to serve as radical precursors. However, excited state flavin is short-lived in many proteins because of rapid quenching by the protein scaffold. Here we report that adding an exogenous Ru(bpy)32+ cofactor to flavin-dependent ‘ene’-reductases enables the redox-neutral decarboxylative coupling of amino acids with vinylpyridines with high yield and enantioselectivity. Additionally, stereo-complementary enzymes are found to provide access to both enantiomers of the product. Mechanistic studies indicate that Ru(bpy)32+ binds to the protein, helping to localize radical formation to the enzyme’s active site. This work expands the types of transformation that can be rendered asymmetric using photoenzymatic catalysis and provides an intriguing mechanism of radical initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for photoenzymatic oxidative radical formation for an intermolecular coupling reaction.
Fig. 2: Optimization of enantioselective decarboxylative alkylation.
Fig. 3: Mechanistic studies and proposed catalytic cycle.
Fig. 4: Scope of the enantioselective decarboxylative alkylation.
Fig. 5: Synthetic application.

Similar content being viewed by others

Data availability

The data that support the findings in this study are available within the paper and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    Article  CAS  Google Scholar 

  3. Reetz, M. T. & Carballeira, J. D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2, 891–903 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Begley, T. P. Cofactor biosynthesis: an organic chemist’s treasure trove. Nat. Prod. Rep. 23, 15–25 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Richter, M. Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep. 30, 1324–1345 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Barra, L., Awakawa, T. & Abe, I. Noncanonical functions of enzyme cofactors as building blocks in natural product biosynthesis. JACS Au 2, 1950–1963 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Prier, C. K. & Arnold, F. H. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts. J. Am. Chem. Soc. 137, 13992–14006 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  10. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  PubMed  CAS  Google Scholar 

  11. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rui, J. et al. Directed evolution of nonheme iron enzymes to access a biological radical-relay C(sp3)−H azidation. Science 376, 869–874 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Massey, V. Introduction: flavoprotein structure and mechanism. FASEB J. 9, 473–475 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. Walsh, C. T. & Wencewicz, T. A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalyzed by flavin-dependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).

    Article  PubMed  Google Scholar 

  17. Fu, H. et al. Ground-state electron transfer as an initiation mechanism for biocatalytic C–C bond forming reactions. J. Am. Chem. Soc. 143, 9622–9629 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fu, H. et al. An asymmetric sp3sp3 cross-electrophile coupling using biocatalysis. Nature 610, 302–307 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Peng, Y. et al. Photoinduced promiscuity of cyclohexanone monooxygenase for the enantioselective synthesis of α-fluoroketones. Angew. Chem. Int. Ed. 61, e202211199 (2022).

    Article  CAS  Google Scholar 

  21. Munro, A. W. & Noble, M. A. in Flavoprotein Protocols. Methods in Molecular Biology Vol. 131, 25–48 (eds Chapman, S. K. & Reid, G. A.) (Humana Press, 1999).

  22. Moulin, S. L. Y. et al. Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae. Plant Physiol. 186, 1455–1472 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang, B., Liebl, U. & Vos, M. H. Flavoprotein photochemistry: fundamental processes and photocatalytic perspectives. J. Phys. Chem. B 126, 3199–3207 (2022).

    Article  Google Scholar 

  24. Sorigué, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357, 903–907 (2017).

    Article  PubMed  Google Scholar 

  25. Zhang, W. et al. Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids. J. Am. Chem. Soc. 141, 3116–3120 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xu, J. et al. Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase. Nat. Commun. 12, 3983 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nakajima, K., Miyake, Y. & Nishibayashi, Y. Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Acc. Chem. Res. 49, 1946–1956 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Beil, S. B., Chen, T. Q., Intermaggio, N. E. & MacMillan, D. W. C. Carboxylic acids as adaptive functional groups in metallaphotoredox catalysis. Acc. Chem. Res. 55, 3481–3494 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kudisch, B. et al. Active-site environmental factors customize the photophysics of photoenzymatic old yellow enzymes. J. Phys. Chem. B 124, 11236–11249 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Biegasiewicz, K. F., Cooper, S. J., Emmanuel, M. A., Miller, D. C. & Hyster, T. K. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat. Chem. 10, 770–775 (2018).

    Article  PubMed  CAS  Google Scholar 

  31. Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2022).

    Article  PubMed  Google Scholar 

  32. Ling, Y. et al. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Dev. Ther. 15, 4289–4338 (2021).

    Article  CAS  Google Scholar 

  33. Yin, Y. et al. Conjugate addition enantioselective protonation of N-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

    Article  PubMed  CAS  Google Scholar 

  34. Yin, Y. et al. All-carbon quaternary stereocenters α to azaarenes via radical-based asymmetric olefin difunctionalization. J. Am. Chem. Soc. 142, 19451–19456 (2020).

    Article  PubMed  CAS  Google Scholar 

  35. Nakano, Y. et al. Photoenzymatic hydrogenation of heteroaromatic olefins using ‘ene’-reductases with photoredox catalysts. Angew. Chem. Int. Ed. 59, 10484–10488 (2020).

    Article  CAS  Google Scholar 

  36. Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2012).

    Article  Google Scholar 

  37. Sakamaki, D., Ghosh, S. & Seki, S. Dynamic covalent bonds: approaches from stable radical species. Mater. Chem. Front. 3, 2270–2282 (2019).

    Article  CAS  Google Scholar 

  38. Hewitt, S. H. et al. Protein surface mimetics: understanding how ruthenium tris(bipyridines) interact with proteins. ChemBioChem 18, 223–231 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Filby, M. H. et al. Protein surface recognition using geometrically pure Ru(II) tris(bipyridine) derivatives. Chem. Commun. 47, 559–561 (2011).

    Article  CAS  Google Scholar 

  40. Espelt, L. R., McPherson, I. S., Wiensch, E. M. & Yoon, T. P. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis. J. Am. Chem. Soc. 137, 2452–2455 (2015).

    Article  PubMed Central  Google Scholar 

  41. Sandoval, B. A. et al. Photoenzymatic catalysis enables radical-mediated ketone reduction in ene-reductases. Angew. Chem. Int. Ed. 58, 8714–8718 (2019).

    Article  CAS  Google Scholar 

  42. Sandoval, B. A. et al. Photoenzymatic reductions enabled by direct excitation of flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 143, 1735–1739 (2021).

    Article  PubMed  CAS  Google Scholar 

  43. Remiszevski, S., Koyuncu, E., Sun, Q. & Chiang, L. Anti-hcmv compositions and methods. WO patent 2016077240A2 (2016).

Download references

Acknowledgements

We thank the S. Lin, P. Milner, A. Musser and R. A. Cerione groups for use of their equipment and the D. Collum group for use of their computational resources. S.-Z.S. thanks Z. Lu (S. Lin group) for helping with electrochemical measurements and W. Fu (SJTU) for examining the electrostatic map of OYE3. S.-Z.S. thanks H. Fu and Y. Ye for discussion. The research reported here was supported by the National Science Foundation CHE-2135973. C.G.P. acknowledges the NSF-GFRP for support. This work made use of the Cornell University NMR Facility, which is supported, in part, by the NSF though MRI Award CHE-1531632.

Author information

Authors and Affiliations

Authors

Contributions

T.K.H. conceived and directed the project. S.-Z.S. and T.K.H. designed the experiments. S.-Z.S. and B.T.N. performed experiments and analysed the results. T.Q. conducted DFT experiments. D.B. and A.J.M. conducted and analysed time-resolved fluorescence spectroscopy. C.G.P helped with revisions of the manuscript. The manuscript was prepared with feedback from all the authors.

Corresponding author

Correspondence to Todd K. Hyster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Qi Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Note: NMR Spectra and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, SZ., Nicholls, B.T., Bain, D. et al. Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis. Nat Catal 7, 35–42 (2024). https://doi.org/10.1038/s41929-023-01065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01065-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing