Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactors

Abstract

Amino acids have wide application in the food and pharmaceutical industries. Current biotic and chemical syntheses suffer from low efficiency, complex purification operations and high energy consumption. Here we report a sustainable electrocatalytic synthesis of alanine from NO and pyruvic acid over oxide-derived Ag with low-coordination sites under ambient conditions. Mechanistic studies reveal a cascade NO → NH2OH → pyruvate oxime → alanine pathway. The quick pyruvate oxime formation and slow pyruvate oxime reduction steps cause various side reactions, leading to low alanine production. Then, a spatially decoupled two-pot electrosynthesis system using flow reactors loaded with oxide-derived Ag is designed for pyruvate oxime formation and reduction reactions. This decoupled system delivers 3.85 g of easily purified alanine with a total Faradaic efficiency of 70% and a purity of >98% at 100 mA cm−2. Further techno-economic analysis demonstrates the potential. This method is suitable for solar-energy-driven alanine electrosynthesis from polylactic acid wastes and for the fabrication of other amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic comparison of amino acid production routes.
Fig. 2: Validation of the electrosynthesis of alanine.
Fig. 3: Mechanistic studies.
Fig. 4: Performance of the two-step electrosynthesis of alanine.

Similar content being viewed by others

Data availability

The DFT-optimized atomic coordinates are available in the Zenodo data repository at https://doi.org/10.5281/zenodo.8157625. The spreadsheets used for the cost analyses are available in Supplementary Data 1. Source data are provided with this paper.

References

  1. Sheehan, R. J. ULLMANN’S Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag, 2000).

  2. Bhat, S. V., Nagasampagi, B. A. & Sivakumar, M. Chemistry of Natural Products 317–393 (Springer, 2005).

  3. Industry Experts. Global amino acids market - products and applications. https://industry-experts.com/verticals/food-and-beverage/global-amino-acids-market-products-and-applications (2017).

  4. Liu, P., Xu, H. & Zhang, X. Metabolic engineering of microorganisms for L-alanine production. J. Ind. Microbiol. Biotechnol. 49, kuab057 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. L-Alanine market to reach valuation of USD183.3 million by 2028 - growth in demand for nutritional products drives the market. Vantage Market Research https://www.vantagemarketresearch.com/press-release/l-alanine-market-425708 (2022).

  6. Zhang, X. et al. Production of l-alanine by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 355–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).

    Article  CAS  Google Scholar 

  8. D’Este, M., Alvarado-Morales, M. & Angelidaki, I. Amino acids production focusing on fermentation technologies – a review. Biotechnol. Adv. 36, 14–25 (2018).

    Article  PubMed  Google Scholar 

  9. Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Justus Liebigs Ann. Chem. 75, 27–44 (1850).

    Article  Google Scholar 

  10. Wang, J., Liu, X. & Feng, X. Asymmetric Strecker reactions. Chem. Rev. 111, 6947–6983 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jouny, M. et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C−N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Y. et al. Electrosynthesis of 15N-labeled amino acids from 15N-nitrite and ketonic acids. Sci. China Chem. 66, 1854–1859 (2023).

    Article  CAS  Google Scholar 

  16. Tao, Z., Rooney, C. L., Liang, Y. & Wang, H. Accessing organonitrogen compounds via C−N coupling in electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 19630–19642 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  18. Guo, C. et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction. J. Am. Chem. Soc. 144, 16006–16011 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J. E. et al. Electrochemical synthesis of glycine from oxalic acid and nitrate. Angew. Chem. Int. Ed. 60, 21943–21951 (2021).

    Article  CAS  Google Scholar 

  20. Fukushima, T. & Yamauchi, M. Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide. Chem. Commun. 55, 14721 (2019).

    Article  CAS  Google Scholar 

  21. Song, S. et al. Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets. Nat. Commun. 11, 4899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hollevoet, L. et al. Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction. Angew. Chem. Int. Ed. 59, 23825–23829 (2020).

    Article  CAS  Google Scholar 

  23. Kitadai, N. et al. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Sci. Adv. 5, eaav7848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kitadai, N. et al. Thioester synthesis through geoelectrochemical CO2 fixation on Ni sulfides. Commun. Chem. 4, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Celik, H. et al. Electroreduction of aromatic oximes: diprotonation, adsorption, imine formation, and substituent effects. J. Phys. Chem. B 110, 6785–6796 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Li, B. et al. Nickel-catalysed asymmetric hydrogenation of oximes. Nat. Chem. 14, 920–927 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, L. et al. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 221, 118747 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, Y. et al. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci. Adv. 8, eabm9477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perra, D. et al. Remarkable acid strength of ammonium ions in zeolites: FTIR study of low-temperature CO adsorption on NH4FER. RSC Adv. 4, 56183 (2014).

    Article  CAS  Google Scholar 

  30. Pérez-Gallent, E., Figueiredo, M. C., Katsounaros, I. & Koper, M. T. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 227, 77–84 (2017).

    Article  Google Scholar 

  31. Ray, W. J., Katon, J. E. & Phillips, D. B. Structure, hydrogen bonding and vibrational spectra of pyruvic acid. J. Mol. Struct. 74, 75–84 (1981).

    Article  CAS  Google Scholar 

  32. Harris, W. C. & Bush, S. F. Vibrational spectra and structure of acetone oxime and acetone oxime-O-d. J. Chem. Phys. 56, 6147–6155 (1972).

    Article  CAS  Google Scholar 

  33. Huang, Y. et al. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 7, 284–291 (2022).

    Article  CAS  Google Scholar 

  34. Manivannan, M. & Rajendran, S. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Technol. 3, 8048–8060 (2011).

    Google Scholar 

  35. Daramola, M. O., Nicola, W. & Jacob, M. N. Effect of the presence of water-soluble amines on the carbon dioxide (CO2) adsorption capacity of amine-grafted poly-succinimide (PSI) adsorbent during CO2 capture. Energy Procedia 86, 90–105 (2016).

    Article  Google Scholar 

  36. Li, J. & Kornienko, N. Electrochemically driven C−N bond formation from CO2 and ammonia at the triple-phase boundary. Chem. Sci. 13, 3957–3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, Y. et al. Electrocatalytic construction of the C−N bond from the derivates of CO2 and N2. Sci. China Chem. 65, 204–206 (2022).

    Article  CAS  Google Scholar 

  38. Murariu, M. & Dubois, P. PLA composites: from production to properties. Adv. Drug Deliv. Rev. 107, 17–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, X. et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nat. Commun. 12, 660 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, J. et al. NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2. Adv. Funct. Mater. 32, 2204056 (2022).

    Article  CAS  Google Scholar 

  41. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Long, J. et al. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem. Int. Ed. 59, 9711–9718 (2020).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Mathew, K. & Sundararaman, R. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (no. 22271213 to B.Z.) for financial support. M.L. thanks H. Li and J. Liu for discussions. We thank Y. Huang for differential electrochemical mass spectrometry tests. We also appreciate the kind help from Y. Liu with the ATR-FTIR measurements.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. conceived the idea and directed the project. B.Z., M.L. and Y.W. designed the experiments. M.L. and Y.W. carried out most of the experiments, analysed the data and wrote the draught of the manuscript. C.C. performed the DFT calculations. B.-H.Z. conducted the techno-economic analysis. M.L. and B.-H.Z. explored the reaction mechanism. J.Z. and C.L. assisted with some experiments and data analysis. B.Z. and M.L. wrote the manuscript. C.L. revised the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Magda Barecka, Wooyul Kim, Tao Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–66, Notes 1–14, Tables 1–10 and refs. 1–18.

Supplementary Data 1

Source data of techno-economic analysis.

Source data

Source Data Fig. 2

Validation of the electrosynthesis of alanine.

Source Data Fig. 3

Mechanistic studies.

Source Data Fig. 4

Performance of the two-step electrosynthesis of alanine.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wu, Y., Zhao, BH. et al. Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactors. Nat Catal 6, 906–915 (2023). https://doi.org/10.1038/s41929-023-01012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01012-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing