Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acid-stable manganese oxides for proton exchange membrane water electrolysis

Abstract

Earth-abundant, acid-stable catalysts for the oxygen evolution reaction are essential for terawatt-scale hydrogen production using proton exchange membrane (PEM) electrolysers. Here we report that optimizing the lattice oxygen structure of manganese oxide allows it to sustain the oxygen evolution reaction for over one month at 1,000 mA cm−2 in 1 M H2SO4. The lifetime enhancement was achieved by substituting pyramidal oxygen with planar oxygen, which has a stronger Mn–O bond and thus suppresses the dissolution of manganese ions. Calculations show that the lattice oxygen dissolution is the bottleneck of deactivation, and this process is less favourable by over 0.2 eV on planar oxygen compared with pyramidal oxygen. Our material shows excellent performance even in a PEM electrolyser, reaching 2,000 mA cm−2 at 2 V with durability exceeding 1,000 h at 200 mA cm−2. This study expands the potential of Earth-abundant catalysts for PEM electrolysis, which may mitigate the reliance on iridium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of synthesized γ-MnO2 materials.
Fig. 2: Spectroelectrochemical measurements of the four γ-MnO2 catalysts.
Fig. 3: Long-term OER stability of γ-MnO2 in acidic electrolyte and theoretical analysis.
Fig. 4: Performance of γ-MnO2 for PEM electrolysis at 80 °C and theoretical analysis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request. The atomic coordinates of the computational models are given in Supplementary Data 1.

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  PubMed  Google Scholar 

  2. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    CAS  PubMed  Google Scholar 

  3. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    CAS  Google Scholar 

  4. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Google Scholar 

  5. Hubert, M. A., King, L. A. & Jaramillo, T. F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers. ACS Energy Lett. 7, 17–23 (2021).

    Google Scholar 

  6. Scott, S. B. et al. The low overpotential regime of acidic water oxidation part II: trends in metal and oxygen stability numbers. Energy Environ. Sci. 15, 1988–2001 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    CAS  Google Scholar 

  8. Huynh, M., Ozel, T., Liu, C., Lau, E. C. & Nocera, D. G. Design of template-stabilized active and Earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 8, 4779–4794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ouimet, R. J. et al. The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers. ACS Catal. 12, 6159–6171 (2022).

    CAS  Google Scholar 

  10. Frydendal, R., Paoli, E. A., Chorkendorff, I., Rossmeisl, J. & Stephens, I. E. L. Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2. Adv. Energy Mater. 5, 1500991 (2015).

    Google Scholar 

  11. Moreno-Hernandez, I. A. et al. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4. Energy Environ. Sci. 10, 2103–2108 (2017).

    CAS  Google Scholar 

  12. Huynh, M., Bediako, D. K. & Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    CAS  PubMed  Google Scholar 

  13. Yu, J. et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with Earth abundant nanostructured Co3O4. Nat. Commun. 13, 4341 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, Z. et al. Tailoring manganese oxide nanoplates enhances oxygen evolution catalysis in acid. J. Catal. 405, 265–272 (2022).

    CAS  Google Scholar 

  15. Huang, J. et al. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12, 3036 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, L. et al. Rutile alloys in the Mn–Sb–O system stabilize Mn3+ to enable oxygen evolution in strong acid. ACS Catal. 8, 10938–10948 (2018).

    CAS  Google Scholar 

  17. Li, A. et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem. Int. Ed. 58, 5054–5058 (2019).

    CAS  Google Scholar 

  18. Hayashi, T., Bonnet-Mercier, N., Yamaguchi, A., Suetsugu, K. & Nakamura, R. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. R. Soc. Open Sci. 6, 190122 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan, S. et al. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, D.-J. (Invited) On the structural and mechanistic studies of PGM-free OER catalysts for PEM electrolyzer. ECS Meet. Abstr. MA2022-01, 1755–1755 (2022).

    Google Scholar 

  21. Rodríguez-García, B. et al. Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustain. Energy Fuels 2, 589–597 (2018).

    Google Scholar 

  22. Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).

    CAS  Google Scholar 

  23. Chatti, M. et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019).

    CAS  Google Scholar 

  24. Yang, X. et al. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 25, 42–50 (2016).

    CAS  Google Scholar 

  25. Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023).

    CAS  PubMed  Google Scholar 

  26. Wang, Z., Zheng, Y.-R., Chorkendorff, I. & Nørskov, J. K. Acid-stable oxides for oxygen electrocatalysis. ACS Energy Lett. 5, 2905–2908 (2020).

    CAS  Google Scholar 

  27. Back, S., Tran, K. & Ulissi, Z. W. Discovery of acid-stable oxygen evolution catalysts: high-throughput computational screening of equimolar bimetallic oxides. ACS Appl. Mater. Interfaces 12, 38256–38265 (2020).

    CAS  PubMed  Google Scholar 

  28. Chabre, Y. & Pannetier, J. Structure and electrochemical properties of the proton/γ-MnO2 system. Prog. Solid St. Chem. 23, 1–130 (1995).

    CAS  Google Scholar 

  29. Zhu, H. et al. Bridging structural inhomogeneity to functionality: pair distribution function methods for functional materials development. Adv. Sci. 8, 2003534 (2021).

    CAS  Google Scholar 

  30. Egami, T. & Billinge, S. J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials. (Pergamon, 2003).

  31. Juhas, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 46, 560–566 (2013).

    CAS  Google Scholar 

  32. Galliez, K. et al. Modelling and quantification of intergrowth in γ-MnO2 by laboratory pair distribution function analysis. J. Appl. Crystallogr. 47, 552–560 (2014).

    CAS  Google Scholar 

  33. Magnard, N. P. L., Anker, A. S., Aalling-Frederiksen, O., Kirsch, A. & Jensen, K. M. Ø. Characterization of intergrowth in metal oxide materials using structure-mining: the case of γ-MnO2. Dalton Trans. 51, 17150–17161 (2022).

  34. Hatakeyama, T., Okamoto, N. L. & Ichitsubo, T. Thermal stability of MnO2 polymorphs. J. Solid State Chem. 305, 122683 (2022).

    CAS  Google Scholar 

  35. Petit, F., Durr, J., Lenglet, M. & Hannoyer, B. Thermal behavior of gamma manganese dioxide. Mat. Res. Bull. 28, 959–966 (1993).

    CAS  Google Scholar 

  36. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

  37. Bard, A. J., Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (John Wiley, 2001).

  38. Ayers, K. et al. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019).

    CAS  PubMed  Google Scholar 

  39. Kato, K., Tanaka, Y., Yamauchi, M., Ohara, K. & Hatsui, T. A statistical approach to correct X-ray response non-uniformity in microstrip detectors for high-accuracy and high-resolution total-scattering measurements. J. Synchrotron Radiat. 26, 762–773 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kato, K. et al. The RIKEN Materials Science Beamline at SPring-8: towards visualization of electrostatic interaction. In Proc. 10th International Conference on Synchrotron Radiation Instrumentation, SRI 2009, Melbourne, Victoria, 875–878 (2010); https://doi.org/10.1063/1.3463354

  41. Kato, K. & Tanaka, H. Visualizing charge densities and electrostatic potentials in materials by synchrotron X-ray powder diffraction. Adv. Phys. X 1, 55–80 (2016).

    Google Scholar 

  42. Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Condens. Matter Phys. 19, 335219 (2007).

    CAS  Google Scholar 

  43. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  46. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Google Scholar 

  47. Caltagirone, S. & Massingill, J. Developing γ-MnO2 models for XRD analysis. ECS Trans. 11, 29–35 (2008).

    CAS  Google Scholar 

  48. Yuan, Y. et al. Revealing the atomic structures of exposed lateral surfaces for polymorphic manganese dioxide nanowires. Small Struct. 2, 2000091 (2021).

    CAS  Google Scholar 

  49. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    CAS  PubMed  Google Scholar 

  50. Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi, Y. et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at BL14B2 (XAFS) and BL44B2 (SR-PXRD) of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal numbers 2021A1664, 2022B1667 and 2022A1045) and RIKEN (proposal numbers 20210064, 20220057 and 20230043). We thank H. Ofuchi (JASRI) for the XAFS experiments, and K. Kato (RIKEN) and K. Shigeta (Nippon Gijutsu Center) for the SR-PXRD and total scattering experiments. We thank T. Wakashima (RIKEN) for his assistance with creating the graphical abstract. This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO, JPNP14021). R.N. acknowledges JSPS Grant-in-Aid for Scientific Research (22H00339). J.X. acknowledges financial supports from the National Key Research and Development Program of China (2021YFA1500702), the National Natural Science Foundation of China (22172156 and 22321002), the AI S&T Program of Yulin Branch, Dalian National Laboratory for Clean Energy, CAS (DNL-YLA202205, J.X.) and DNL Cooperation Fund, CAS (DNL202003).

Author information

Authors and Affiliations

Authors

Contributions

S.K., A.L. and R.N. conceived and designed the experiments. S.K., A.L., K.A., K.F. and Q.J. performed the experiments. J.L. and J.X. performed the DFT calculations. S.K., A.L., H.O., K.A., D.H. and R.N. analysed the data. S.K., A.L., J.L., H.O., J.X. and R.N. co-wrote the paper. All the authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Ailong Li, Jianping Xiao or Ryuhei Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Bin Dong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Tables 1–13, Notes 1–4 and References.

Supplementary Data 1

The atomic coordinates of the computational models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S., Li, A., Long, J. et al. Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nat Catal 7, 252–261 (2024). https://doi.org/10.1038/s41929-023-01091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01091-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing